Waveguide solutions for a nonlinear ...
Document type :
Partie d'ouvrage
Title :
Waveguide solutions for a nonlinear Schrödinger equation with mixed dispersion
Author(s) :
Bonheure, Denis [Auteur]
Département de mathématiques Université Libre de Bruxelles
Quantitative methods for stochastic models in physics [MEPHYSTO]
Nascimento, Robson [Auteur]
Département de mathématiques Université Libre de Bruxelles
Département de mathématiques Université Libre de Bruxelles
Quantitative methods for stochastic models in physics [MEPHYSTO]
Nascimento, Robson [Auteur]
Département de mathématiques Université Libre de Bruxelles
Book title :
Contributions to Nonlinear Elliptic Equations and Systems
Publisher :
Springer
Publication date :
2015
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]
Mathématiques [math]
English abstract : [en]
In this note we provide some simple results for the 4NLS model i∂tψ + ∆ψ + |ψ| 2σ ψ − γ∆ 2 ψ = 0, where γ > 0. Our aim is to partially complete the discussion on waveguide solutions in [11, Section 4.1]. In particular, we ...
Show more >In this note we provide some simple results for the 4NLS model i∂tψ + ∆ψ + |ψ| 2σ ψ − γ∆ 2 ψ = 0, where γ > 0. Our aim is to partially complete the discussion on waveguide solutions in [11, Section 4.1]. In particular, we show that in the model case with a Kerr nonlinearity (σ=1), the least energy waveguide solution ψ(t, x) = exp(iαt)u(x) with α > 0 is unique for small γ and qualitatively behaves like the waveguide solution of NLS. On the contrary, oscillations arise at infinity when γ is too large.Show less >
Show more >In this note we provide some simple results for the 4NLS model i∂tψ + ∆ψ + |ψ| 2σ ψ − γ∆ 2 ψ = 0, where γ > 0. Our aim is to partially complete the discussion on waveguide solutions in [11, Section 4.1]. In particular, we show that in the model case with a Kerr nonlinearity (σ=1), the least energy waveguide solution ψ(t, x) = exp(iαt)u(x) with α > 0 is unique for small γ and qualitatively behaves like the waveguide solution of NLS. On the contrary, oscillations arise at infinity when γ is too large.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- Bonheure-Nascimento-copy.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- Bonheure-Nascimento-copy.pdf
- Open access
- Access the document