Length product of homologically independent ...
Document type :
Pré-publication ou Document de travail
Title :
Length product of homologically independent loops for tori
Author(s) :
Balacheff, Florent [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Karam, Steve [Auteur]
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Karam, Steve [Auteur]
Laboratoire de Mathématiques et Physique Théorique [LMPT]
English keyword(s) :
Minimal hypersurface
second Minkowski theorem
systolic geometry
torus
second Minkowski theorem
systolic geometry
torus
HAL domain(s) :
Mathématiques [math]/Géométrie différentielle [math.DG]
English abstract : [en]
We prove that any Riemannian torus of dimension $m$ with unit volume admits $m$ homologically independent closed geodesics whose length product is bounded from above by $m^m$.We prove that any Riemannian torus of dimension $m$ with unit volume admits $m$ homologically independent closed geodesics whose length product is bounded from above by $m^m$.Show less >
Language :
Anglais
ANR Project :
Collections :
Source :
Files
- 1506.06504
- Open access
- Access the document