WEIGHTED POTENTIAL THEORY UNDER CONSTRAINT FOR PROBABILISTS
Type de document :
Pré-publication ou Document de travail
Titre :
ON THE DOUGLAS-KAZAKOV PHASE TRANSITION
WEIGHTED POTENTIAL THEORY UNDER CONSTRAINT FOR PROBABILISTS
WEIGHTED POTENTIAL THEORY UNDER CONSTRAINT FOR PROBABILISTS
Auteur(s) :
Lévy, Thierry [Auteur]
Laboratoire de Probabilités et Modèles Aléatoires [LPMA]
Maida, Mylene [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire de Probabilités et Modèles Aléatoires [LPMA]
Maida, Mylene [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Physique mathématique [math-ph]
Résumé en anglais : [en]
We give a rigorous proof of the fact that a phase transition discovered by Douglas and Kazakov in 1993 in the context of two-dimensional gauge theories occurs. This phase transition can be formulated in terms of the Brownian ...
Lire la suite >We give a rigorous proof of the fact that a phase transition discovered by Douglas and Kazakov in 1993 in the context of two-dimensional gauge theories occurs. This phase transition can be formulated in terms of the Brownian bridge on the unitary group U(N) when N tends to infinity. We explain how it can be understood by considering the asymptotic behaviour of the eigenvalues of the unitary Brownian bridge, and how it can be technically approached by means of Fourier analysis on the unitary group. Moreover, we advertise some more or less classical methods for solving certain minimisation problems which play a fundamental role in the study of the phase transition.Lire moins >
Lire la suite >We give a rigorous proof of the fact that a phase transition discovered by Douglas and Kazakov in 1993 in the context of two-dimensional gauge theories occurs. This phase transition can be formulated in terms of the Brownian bridge on the unitary group U(N) when N tends to infinity. We explain how it can be understood by considering the asymptotic behaviour of the eigenvalues of the unitary Brownian bridge, and how it can be technically approached by means of Fourier analysis on the unitary group. Moreover, we advertise some more or less classical methods for solving certain minimisation problems which play a fundamental role in the study of the phase transition.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- DKversionHAL.pdf
- Accès libre
- Accéder au document
- 1503.00502
- Accès libre
- Accéder au document