Quantitative results on the corrector ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Quantitative results on the corrector equation in stochastic homogenization
Auteur(s) :
Gloria, Antoine [Auteur]
Département de Mathématique [Bruxelles] [ULB]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Otto, Felix [Auteur]
Max Planck Institute for Mathematics in the Sciences [MPI-MiS]
Département de Mathématique [Bruxelles] [ULB]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Otto, Felix [Auteur]
Max Planck Institute for Mathematics in the Sciences [MPI-MiS]
Titre de la revue :
Journal of the European Mathematical Society
Pagination :
3489-3548
Éditeur :
European Mathematical Society
Date de publication :
2017
ISSN :
1435-9855
Mot(s)-clé(s) en anglais :
Stochastic homogenization
corrector equation
variance estimate
corrector equation
variance estimate
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
We derive optimal estimates in stochastic homogenization of linear elliptic equations in divergence form in dimensions $d\ge 2$. In previous works we studied the model problem of a discrete elliptic equation on $\mathbb{Z}^d$. ...
Lire la suite >We derive optimal estimates in stochastic homogenization of linear elliptic equations in divergence form in dimensions $d\ge 2$. In previous works we studied the model problem of a discrete elliptic equation on $\mathbb{Z}^d$. Under the assumption that a spectral gap estimate holds in probability, we proved that there exists a stationary corrector field in dimensions $d>2$ and that the energy density of that corrector behaves as if it had finite range of correlation in terms of the variance of spatial averages - the latter decays at the rate of the central limit theorem. In this article we extend these results, and several other estimates, to the case of a continuum linear elliptic equation whose (not necessarily symmetric) coefficient field satisfies a continuum version of the spectral gap estimate. In particular, our results cover the example of Poisson random inclusions.Lire moins >
Lire la suite >We derive optimal estimates in stochastic homogenization of linear elliptic equations in divergence form in dimensions $d\ge 2$. In previous works we studied the model problem of a discrete elliptic equation on $\mathbb{Z}^d$. Under the assumption that a spectral gap estimate holds in probability, we proved that there exists a stationary corrector field in dimensions $d>2$ and that the energy density of that corrector behaves as if it had finite range of correlation in terms of the variance of spatial averages - the latter decays at the rate of the central limit theorem. In this article we extend these results, and several other estimates, to the case of a continuum linear elliptic equation whose (not necessarily symmetric) coefficient field satisfies a continuum version of the spectral gap estimate. In particular, our results cover the example of Poisson random inclusions.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet Européen :
Commentaire :
1 figure
Collections :
Source :
Fichiers
- 1409.0801
- Accès libre
- Accéder au document