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SOLVING A DYNAMIC COMBINATORIAL AUCTIONS PROBLEM BY A
HYBRID METAHEURISTIC BASED ON A FUZZY DOMINANCE RELATION

Larbi Asli1,∗, Méziane Äıder1 and El-Ghazali Talbi2

Abstract. This paper introduces a bi-objective winner determination problem which is based on En-
glish auctions. Most models of combinatorial auctions (winner determination problem) do not allow the
bidder to update his offer, due to the fact that these mechanisms are static. However in reality bidders
are in rough competition while there is time for auction. In this work we give a mathematical formula-
tion of the dynamic model of the bi-objective winner determination problem, where the objectives are:
(i) maximization of the total income, (ii) maximization of the number of items sold. This problem is
based on the English auction mechanism, which allows bidders to renew their bids until the end of the
exercise period. Then the solution is proposed by giving an algorithm based on an hybridization of a
metaheuristic with a fuzzy dominance relation. A numerical experimentation using this algorithm on
simulated data gives rise to satisfactory results.
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Introduction

The study of combinatorial auctions problems is very important whether in theory or in practice. Several
mathematical models are designed to describe and understand the topic, we can cite the integer programming
for combinatorial auctions winner determination [1], the resolution of the problem of transportation contracts
[3,15], the use of the set packing problem to model the problem [8], and other relative works [1,2,9,12–14,20,21].
Combinatorial Auctions are an important interdisciplinary field combining issues from economics, game theory,
optimization, and computer science.

The Combinatorial Auctions Problem (CAP) is defined as a set of items submitted to sale facing many
buyers. For reasons of complementarity between items, every buyer will want to buy his own subset of items for
which he provides an estimate. Because of the possible intersection between subsets, conflicts can arise between
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buyers [2]. The objectives of the seller are various. The most important one is to maximize the total profit of
the sale. To achieve that, he has to solve an NP-hard combinatorial optimization problem.

All existing combinatorial auctions models in the literature do not allow the bidder to update his offer. This
is due to the fact that the mechanisms used are static. However, in reality, bidders are in competition while
there is time left for the auction.

In this work an adequate dynamic formulation to replicate the English auction process is given. An English
combinatorial auction is described by a number m of items in limited quantities for each one, which are offered
for sale to potential buyers. These buyers have a limited period of time and opportunity to update their bids.

Each bid is a combination of items, formulated as a vector of dimension m+1, which contains m quantities of
items desired by the bidder and the price offered for this bid. Knowing the bids of each other, an algorithm that
will list the temporary winners at every moment will be developed, which leaves to the bidders the opportunity
to respond accordingly.

The winner determination problem in its bi-objective version includes, in addition to maximizing the total
profit of the auction, a second objective which is the liquidation of a maximum number of items sold in auction.
The seller must optimize simultaneously both objectives, that are contradictory.

The multi-objective kind of this problem requires the non-existence of a single solution, but a set of efficient
solutions. Several works on such problems are based on the classical Pareto efficient mechanisms for comparing
pseudo-solutions. This principle generates therefore huge volume of calculations when the size of the problems
is considerable [5, 22].

Several forms derived from the Pareto dominance are used to try to appease the resolution process, such as
A-dominance, lexicographical dominance, cone dominance [4–7,18], etc.

Fuzzy dominance is one of the alternatives designed to overcome the difficulty of calculating Pareto’s front.
This principle, used for the first time in the field of multi-objective combinatorial optimization by Sakawa
et al. [19], gives interesting results, since several authors have used it in various fields of optimization [4,6,7,10,
11,16–18].

We will hybridize this mechanism with the tabu search metaheuristic with random walk in order to reduce
the computational cost.

The choice of the tabu method is motivated by the simplicity of its operation as well as the ease of its
implementation. Indeed, it allows savings of time of resolution for the large programs, and escapes the local
optima by the use of a concept of memory strategy.

This work focuses essentially on:

• The development of a new dynamic model describing the behavior of the auctioneers which gives them the
opportunity to update their bids during the exercise period, and covers seller’s goals.

• Building an efficient algorithm that will be called “FM-CAP” algorithm to solve this problem in an opti-
mal manner. The problem is a winner determination problem (WDP), which is modeled as a bi-objective
multidimensional knapsack problem.

• Fuzzy dominance will be used to improve the multi-objective resolution process.

1. Dynamic bi-objective combinatorial auctions model

Online auctions are very important since they allow to exchange goods and services without moving and
without physical encounter. Customers can run their applications for products from any place in world. How-
ever the price is not the only requirement of the owners and the customers, the delivery time and the num-
ber of products sold are also essential factors in the procedure besides other factors. These considerations
motivate the development of an adequate multi-objective model that can meet the demands of bidders and
sellers.
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1.1. Preliminaries

The development of this new model requires the introduction of several concepts and notations which are
given below:

Ej : jth bidder;
tl: the time when a bidder Ej launches his bid;

prev(t): the time of the previous event just before the present one at t.
Sj(t): an (n + 1)-vector containing (Aj(t), cj(t)), and representing the temporary offer of the bidder Ej at

time t where;
Aj : an n-vector of item quantity contained in Sj ;

cj(t): the value of the bid Sj at time t;
βi: number of copies of the item i;

LTGt: temporary list of winners at time t;
LFGT : final list of winners;
NEVT: new event;

LECj(t): list of bidders in conflict with Ej at time t;
Z(t): temporary gain at time t.

In addition to the concepts already introduced, we also need the following definitions.

Definition 1.1. The exercise period, denoted T , is defined to correspond to the time interval [0, T ] associated
to the auction in which bidders can launch their offers.

Definition 1.2. Temporary offer Sj(aij , cj) is the offer made by the bidder Ej at time tl ∈ [0, T ], each offer
contains:
aij(t): the n-dimensional vector representing the quantities of items required by the bidder Ej ;
cj(t): the bid price.
This bid may be updated during the exercise period.

Definition 1.3. Temporary winners LTG is the temporary list of winning bidders at time tl ∈ [0, T ], (this list
may change during the exercise period T ).

Definition 1.4. The conflict graph [2] is the graph where the vertices are the deals and edges connecting the
deals that can not be selected simultaneously. This graph can detect the conflicting deals (i.e. deals that share
at least one object).

1.2. WDPt mathematical model

We present here a dynamic bi-objective mathematical model of combinatorial auctions (WDP). This problem
belongs to the class of combinatorial optimization problems. The most important parameters of the model are
the numbers of items m (that will be contained in a vector β, the numbers of units for each component is βi),
and an exercise period T .

This model includes two objectives, the first objective is the maximization of the total profit obtained by the
auction, and the second one is the maximization of the number of items sold.

This model reproduces the behavior of an English auction where each bidder has the right to update his bid
during the exercise period.

The model is built in a dynamic way. It starts at t = 0, once the first bidder proposes a first bid S1(c1(t), ai1(t)).
Each offer contains a list of items Aj with corresponding prices cj . At this moment, the problem will contain a
single variable and be 1-dimensional.

So, and as long as other bidders come, the model is completed with the possibility that each offer previously
given can be changed depending on the status of the auction.
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For reasons of adequacy of the problem, the sum of the winning bids must not exceed the number of available
items.

Let the decision variables be:

xj =
{

1, if the bid of Ej is accepted,
0, otherwise, j = 1, . . . , n.

The full model at time t ∈ [0, T ] is:

WDPt



f1
t (x) = max

k∑
j=1

cj(t)xj

f2
t (x) = max

m∑
i=1

k∑
j=1

aij(t)xj

k∑
j=1

aij(t)xj ≤ βi i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , k.

(1.1)

Upon completion of the exercise period (t = T ), the model will be final and contain n bidders.

WDPT



f1
t (x) = max

n∑
j=1

cjxj

f2
t (x) = max

m∑
i=1

n∑
j=1

aijxj

n∑
j=1

aijxj ≤ βi i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n.

(1.2)

2. Resolution algorithm for the WDPT model

An algorithm that gives at each time of the exercise period the list of temporary potential winners is devel-
oped. This algorithm is designed in a way to escape if possible solving WDPt problems. This is based on
the analysis of bids at each new event. If there is no conflict with the temporary winning bids, the new bid-
der will also be winning. Otherwise, we resolve the WDPt problem by the Metaheuristic random walk tabu
search.

At the opening of the auction (t = 0), bidders launch their bids, the first bidder E1 launches the bid S1

at time t1. It will be represented by a (m + 1)-vector S1, where each component a1j contains the number
of units requested for the article βj . Thus, the value c1 of the bidder E1 will be considered a temporary
winner.

At time t2, a second bidder E2 launches his submission S2. If the second bid S2 is not in conflict with the
first bid S1, the bidder E2 will be also a temporary winner. Otherwise, if the bidder E2 dominates the bidder
E1, then E2 replaces E1 in the list of temporary winners.

From this moment we can have a new bid Sj or an update of a bid already made. The model is completed
until the end of the exercise period t = T . Each event will be treated in a manner that will not lead us to solve
the temporary problem WDPt.

The necessary ingredients for this algorithm are the tabu search metaheuristic, and the fuzzy logic dominance
notion, that we will be explained.



SOLVING A DYNAMIC CAP BY A HYBRID METAHEURISTIC WITH A FUZZY DOMINANCE RELATION 211

2.1. Random Walk Tabu Search (RWTS) algorithm

Contrary to the basic tabu search algorithm, where the diversification is ensured only by the tabu list, random
walk tabu search algorithm consists of realizing sometimes a move which is no more guided by the evaluation
function and then constitutes a diversification diagram.

At every iteration of the algorithm “RWTS”, a real value rw ∈ [0, 1] is randomly generated. Let us
put q ∈ [0, 1] the value threshold, then, if rw > q the algorithm will select the best movement, oth-
erwise, the algorithm will make a feasible random movement. The algorithm RWTS can be described as
follows:

Algorithm 1: RWTS algorithm.
Data: Number of iterations nbiter, random threshold q;
Result: A fuzzy set ND of potentially non-dominated solutions;
Initialization: Select an initial solution x, by the greedy heuristic. ND ← {x};

1 Begin
2 For i = 0 To nb− iter
3 Generate a random value rw ∈ [0, 1];
4 If rw ≤ q Then
5 Choose a random allowed move j∗;
6 Else
7 Choose the best allowed move j∗;
8 End
9 Update the tabu list with j∗;

10 Perform the chosen move j∗ in x: let x′ be the obtained solution;

11 Update the set of non-dominated solutions with x′;

12 End

13 End.

2.2. Fuzzy dominance relation

Due to the benefits and the efficiency in the resolution of optimization problems, fuzzy logic was become
useful in several areas of optimization, like the combinatorial optimization with or without fuzzy parameters,
the integer programming and nonlinear programming [6, 7, 16,19].

Sakawa used fuzzy logic in several works, we can cite: Solving linear programming problems (0-1 programming)
especially the multi-objective multi-dimensional knapsack problem and the multi-objective job shop problem
[19]. He also used it in combinatorial optimization problems with fuzzy parameters. The concept is generalized
for the integer multi-objective programming with fuzzy parameters. and he also used it in the nonlinear multi-
objective programming with or without fuzzy parameters [19].

We also cite several uses of fuzzy dominance in the electricity domain as resolving a possibilistic model
based planning of electrical distribution systems [18], or Electrical Discharge Machine using Fuzzy Evolutionary
Strategies [6, 10], etc.

Recent works in several areas of multi-objective optimization are focused on this concept, we cite goal pro-
gramming [16], portfolio optimization [17], electricity distribution system planning [6], particle swarm optimiza-
tion [4], as well as multi-objective workflow grid scheduling [7].

The multi-objective nature of CAP requires to use fuzzy logic at two levels of resolution; first, when comparing
each new solution to the one already found in the non-dominated set ND (due to its very large size); second,
when choosing a single solution at the end of the resolution process.

Fuzzy dominance

In this section we study the fuzzification of the Pareto dominance relation. We say that a vector u Pareto-
dominates a vector v if (∀ i ∈ {1, . . . , n}(ui ≤ vi) with uj < vj) for at least one item j ∈ {1, . . . , n}. Then
the subset of all vectors which are not dominated by any other vector in the objective space S is the Pareto
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Figure 1. Fuzzy dominance between u and v.

set. Note that in a similar manner, Pareto dominance can be related to the ”>” relation depending on the
application context.

The interest of the Pareto front fuzzification is to provide for each pair of vectors a usable numeri-
cal representation of dominance. Fuzzy dominance is calculated once both the two following conditions are
checked.

1. The measure is not symmetric and between two vectors u and v, the two measures “u dominates v by
degree µa” (active dominance), and “u is dominated by v with degree µp” (passive dominance) have to be
distinguished, since the calculations of the two measures differ by the denominator and are therefore not
symmetrical.

2. The dominance degrees are set-dependent and can not be assigned in an absolute manner to single vectors
alone.

The fuzzy classification system for a generic set of vectors S is based on the computation of the comparison
value for each pair of vectors {u, v} by using Definition 2.1, and then sort out the values in increasing or
decreasing order depending on the optimization context.

Definition 2.1. [11] The fuzzification of Pareto dominance relation can be written as follows: A vector u
dominates a vector v by degree µa with a value

µa(u, v) =
∏

i min(ui, vi)∏
i ui

(2.1)

and that vector u is dominated by vector v with degree µp with

µp(u, v) =
∏

i min(ui, vi)∏
i vi

(2.2)

Then we have: ∣∣∣∣∣∣
µa(u, v) = 1, if u Pareto-dominates v;
µp(u, v) = 1, if v Pareto-dominates u;
µa(u, v) < 1, otherwise.

Figure 1 gives a numerical example for the fuzzy Pareto dominance considered here between two vectors u and
v. Note that, when we compute µ, if an item ui = 0 or vi = 0, this is handled by the exclusion in the products
in the both numerator and denominator. Here, u dominates v by degree 2×3

2×10 = 0.3 and is dominated by v by
degree 2×3

3×15 = 0.13.
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2.3. Fuzzy Multi-objective CAP-algorithm (FM-CAP)

The steps of this algorithm are given by:

Algorithm 2: FM-CAP
Data: T , β;
Result: A set ND of potentially non-dominated winners ;

1 Begin
2 While t < T
3 Generate a new NEVT;
4 If NEVT=new submission Then
5 size(CAPt) = size(CAPprev(t)) + 1;
6 If no conflict Then
7 Update LTGt;
8 Else
9 solve CAPt by Fuzzy RWTS algorithm;

10 End
11 Else
12 NEVT= update submission;
13 If conflict between submissions Then
14 solve CAPt by Fuzzy RWTS algorithm;
15 Else
16 update LTGt;
17 End
18 End
19 End
20 LFGT = LTGt;
21 End.

3. Didactic example

To better understand the behavior of this model and its solution algorithm, an illustration by a didactic
example (numerical) is made.

A set of three products on sale, that includes for each one, the amounts given in the vector β = (10, 7, 9)
respectively, and an exercise period T = 10 units of time.

During this period, four bidders will participate at the auction. They will express their bids as the quantities
of items they need and the corresponding prices. During the period T , these four bidders will give their bids
and will update them. The progress of the operation is shown in the Table 1.

3.1. Details on the calculation steps

At time t1, the first bidder E1 launches his first bid at
1 = (2, 3, 5) for an estimate c1 = 15. The temporary

problem is:

WDPt1



f1
t (x) = max 15x1

f2
t (x) = max 2x1 + 3x1 + 5x1 2

3
5

x1 ≤

 10
7
9


x1 ∈ {0, 1}

(3.1)
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This event will be considered as a new bid. One can observe that there is no conflict, because E1 is
alone in this auction at this time, therefore he will be a first temporary winner. The objective function value
is:

Z1 =
(

15
2 + 3 + 5

)
=
(

15
10

)
.

A new bid is made at time t2 by the bidder E2 containing a bid at
2 = (5, 3, 0) with c2 = 20. The problem has

two bidders:

WDPt2






f1
t (x) = max (15, 20)

(
x1

x2

)

f2
t (x) = max (2, 5)

(
x1

x2

)
+ (3, 3)

(
x1

x2

)
+ (5, 0)

(
x1

x2

)




2 5
3 3
5 0




(
x1

x2

)
≤




10
7
9





x ∈ {0, 1}2

(3.2)

This bid does not present any conflict with E1. Then it will also become temporary winner with objective
function value:

Z2 =
(

15 + 20
(2 + 5) + (3 + 3) + (5 + 0)

)
=
(

35
18

)
No change for the temporary list until t3, when E3 enters to the game, so the problem evolves as follows:

WDPt3






f1
t (x) = max (15, 20, 24)




x1

x2

x3





f2
t (x) = max (2, 5, 3)




x1

x2

x3



+ (3, 3, 3)




x1

x2

x3



+ (5, 0, 3)




x1

x2

x3








2 5 3
3 3 3
5 0 3








x1

x2

x3



 ≤




10
7
9





x ∈ {0, 1}3

(3.3)

The bid of E3 compounds a3j = (3, 3, 3) with c3 = 24 and this makes a conflict with both E1 and E2. At this
moment, the set of solutions is:

Z3 =
{
Z31 =

(
35
18

)
, Z32 =

(
39
19

)
, Z33 =

(
44
17

)}
But Z31 is dominated by Z32, therefore, the set of effective solutions is {Z32 =

(
39
19

)
, Z33 =

(
44
17

)
} which

represents the winning couples (E1, E3), (E2, E3). We must choose one solution, we do that by fuzzy
dominance: 

µa(Z32, Z33) =
∏

i min(ui, vi)∏
i ui

=
19× 17
39× 19

= 0, 435

µp(Z32, Z33) =
∏

i min(ui, vi)∏
i vi

=
19× 17
44× 17

= 0, 431
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The couple {E3, E2} has the best evaluation, so E3 and E2 become temporary winners.
E1 reacts by updating his price to c1 = 21 at time t4 and the same process at t3 is made, E1 rejoins E3 as

temporary winner.
From this moment, until t = 10 units of time, the auction continues by application of the FM-CAP

algorithm.

4. Numerical experimentation

In order to evaluate the effectiveness of the fuzzy dominance mechanism, we proceed in this numerical part,
to the implementation of the tabu search metaheuristic. Then we generate different size test problems for the
bi-objective winner determination problem model, in order to compare the results obtained by the use of the
two dominance mechanisms “Pareto and fuzzy”. This comparison will build in addition of running time, on the
calculation of the hypervolume metric which will be defined further.

These executions of tabu search metaheuristic (which is a part of the FM-CAP algorithm) consist of:

• Finding the appropriate parameters of the metaheuristic (the number of iterations and the threshold of the
random walk).

• Discovering the mutual influences between the number of iterations, the hypervolume, the CPU time and
the Pareto front size.

• In the end, executions of large instances of WDP problem to see the ability of the tabu method.

4.1. Hyervolume

This metric was introduced by Zitzler [22] to calculate an approximate volume under the curve formed by the
points of the set being evaluated. Thus, when the problem has two criteria, this calculation is the calculation
of an area. When the problem has three criteria, the calculated value is a volume, etc. The definition presented
in Zitzler [22] is as follows:

Definition 4.1. Let A = (x1, x2, . . . , xn) ⊆ X be a subset of n elements. The H function calculates the volume
bounded by the union of all polytopes p1, p2, . . . , pn, where each pi is formed by the intersection of hyperplanes of
xi with respect to the coordinate axes: for each axis of the objective space, there is a hyperplane perpendicular
to the axis and passing through the point (f1(xi), f2(xi), . . . , fk(xi)). For the two-dimensional case, each pi

represents the rectangle defined by the coordinate points (0, 0) and (f1(xi), f2(xi)).

In the case of minimization problems where one seeks to minimize the values of objectives, and where compromise
surfaces have the same number of points, the smaller the value of hypervolume is, the better is the compromise
surface.

4.2. Results

We implement the programs on testing problems crafted such kinds to replicate some natural bidders behav-
iors, such:

• Strong individual request of bid;
• An average demand balanced among all the bidders;
• Weak demand.

Each instance of the problem is simulated based on the normal distibution, of fixed standard deviation σ and
average λ, which varies from 0 to min βi depending on the case: a high average for the consequent requests, a
low average for demands of small cardinalities and finally an average for ordinary applications.

All these executions are carried out on a machine with the following characteristics: windows 7, 64-bit,
Intel(R)Core(TM) i3-2377M CPU 1,50 GHz, RAM 4,00 Go.



SOLVING A DYNAMIC CAP BY A HYBRID METAHEURISTIC WITH A FUZZY DOMINANCE RELATION 217

Table 2. The influence of random walk on the tabu method.

RW Cpu Size efficient solutions Hypervolume

Fuzzy tabou Pareto tabou Fuzzy tabou Pareto tabou Fuzzy tabou Pareto tabou
0,1 4.132309 4.169697 6 2 737962 541099
0,2 4.247215 4.246543 4 2 672244 423298
0,3 4.229345 4.235883 4 1 886936 302176
0,4 4.273540 4.171221 4 3 751377 617758
0,5 4.170811 4.097720 4 1 580488 234030
0,6 4.270917 4.112718 4 1 884720 281428
0,7 4.066521 4.058711 3 2 658009 614712
0,8 4.032938 4.092391 2 1 878968 263980
0,9 4.076117 4.064959 2 1 808981 221234

Figure 2. Random walk influence.

Table 2 presents the influence of random walk on the Tabu search method, This is achieved by varying the
parameter W by 0.1 at each step on the range [0.1, 0.9] for a fixed number of steps (200). The instance Ca2 -50-8
of the WDPt is selected for this test. For each run, the sizes of the effective solutions are recorded. The obtained
results are presented in Table 2 and illustrated in Figure 2.

Table 3 contains the results of the influences between the number of iterations and the running time, efficient
set and hypervolume, thus, influences between, Hypervolume/Efficient sets, Cpu time/Efficient sets and Cpu
time/Hypervolume. The problem test ca50-8 was also selected for this study.

Results of influences parameters and comparison between both mechanisms are depicted by Figure 3.
After reviewing the results of these implementations, we note that:

• The threshold of the random walk influences directly the size of efficient set, therefore hypervolume.
• The cpu time, hypervolume and efficient set size increase proportionally with the number of iterations

increasing.
• The hypervolume output from each execution is proportional to the size of the efficient set.

Table 4 contains the results of implementation on machine. Size of instances problem (B-CAP) varies between
3 and 12 constraints and 5–500 variables for a fixed value of random walk 0, 3. To address the heuristic nature
of the Tabu method, multiple runs for each mechanism are made, then the best result is chosen. The two sets



218 L. ASLI ET AL.

Table 3. Influences (number of steps, cpu time, hypervolume, efficient set).

Number of steps Fuzzy/Pareto Cpu time Efficient set size Hypervolume

50 Pareto TS 1.087582 1 219392
Fuzzy TS 1.184999 2 579561

100 Pareto TS 2.152525 2 795668
Fuzzy TS 2.311846 4 838457

150 Pareto TS 3.170974 2 570505
Fuzzy TS 3.240528 4 636415

200 Pareto TS 4.347353 1 261300
Fuzzy TS 4.226346 3 446406

250 Pareto TS 5.476409 1 258180
Fuzzy TS 5.535162 3 888463

300 Pareto TS 6.296518 1 246132
Fuzzy TS 6.437656 4 748126

350 Pareto TS 7.096277 4 509700
Fuzzy TS 7.096271 7 744711

400 Pareto TS 8.405027 1 268268
Fuzzy TS 8.523825 2 644447

450 Pareto TS 9.804638 1 654001
Fuzzy TS 9.504429 2 293664

500 Pareto TS 10.113463 2 715776
Fuzzy TS 10.339936 4 733502

Figure 3. Number of steps influences.

of efficient solutions obtained by the two mechanisms will be tested and will be compared by the hypervolume
metric.

Figure 4 gives rise to a comparison of the two methods by the hypervolume ticket, that is a performance
index used to compare the volumes generated by the sets of efficient solutions. Recall here that the comparison
criterion is proportionally linked to the type of objective functions. Indeed hypervolume metric is better than
any another one in our case (maximization) if and only if it is higher.
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Table 4. Computation results.

Time/Metrics Number Time resolution Hypervolume Efficient set size
instances of steps Fuzzy Pareto Fuzzy Pareto Fuzzy Pareto

TS TS TS TS TS TS

2ca5-2 20 0.497525 0.515229 2783 2783 1 1
2ca5-3 20 0.498827 0.500535 5936 5936 1 1
2ca5-4 20 0.528300 0.476851 43014 43014 2 2
2ca8-2 50 1.145255 1.130748 56416 39791 4 3
2ca8-4 50 1.182007 1.191154 33200 31501 2 2
2ca8-5 50 1.126479 1.060983 36280 35185 3 2
2ca10-2 70 1.574336 1.481346 55752 49189 3 4
2ca10-4 70 1.570095 1.763708 54868 15456 3 1
2ca10-5 70 1.742172 1.670500 58836 36629 2 3
2ca20-4 100 2.376816 2.304323 1924857 1587861 6 3
2ca20-5 100 2.394490 2.453457 5174121 3325273 2 2
2ca20-7 100 2.400410 2.378088 283282 255183 3 2
2ca30-5 140 3.578758 3.669310 934041 220890 2 1
2ca30-6 140 3.648789 3.514757 615184 576925 4 2
2ca30-9 140 3.323080 3.362119 419895 369745 1 1
2ca40-8 200 4.826474 5.044656 543665 516560 4 4
2ca40-10 200 4.804330 4.861535 501430 306574 3 6
2ca40-12 200 5.204353 4.976486 643651 525822 5 2
2ca50-4 250 6.395765 6.673607 525252 499410 1 1
2ca50-6 250 5.851583 5.732624 1249696 430612 3 1
2ca50-8 250 5.842883 5.930319 737242 724584 4 1
2ca80-3 300 7.145285 7.251330 1431490 1428960 1 1
2ca80-6 300 7.025340 7.013142 5663436 2274098 1 1
2ca80-8 300 6.982457 7.117022 2700390 2430981 1 1
2ca100-3 500 12.183902 12.092765 578547 504643 2 1
2ca100-4 600 14.532469 14.582653 228045 219487 3 2
2ca100-8 500 14.658570 15.050283 1316520 975125 2 1
2ca200-4 900 22.591620 22.771622 1.439·109 113039791 6 1
2ca200-5 900 22.371261 22.388491 133921324 122955240 2 3
2ca200-7 800 18.297821 18.442591 105233679 15712825 4 2
2ca500-2 1500 31.150984 31.124524 11653664 6164795 5 2
2ca500-3 1500 30.942580 31.213084 1808989 2117837 9 5
2ca500-5 1500 31.168190 31.462098 8010090 7468070 4 3

4.3. Result analysis

The numerical experiments performed on all benchmarks give rise to interesting remarks, emphasizing the
effectiveness of fuzzy comparison mechanism. Thus, it is obvious that the cpu time is not the only performance
index to evaluate on a multi-objective resolution process. In this part we also compare the results obtained
through hypervolume and size of efficient set.

In all tested problems we notice an approximation of the cpu time between the two mechanisms with a slight
superiority of fuzzy comparison mechanism. However, a net superiority of fuzzy mechanism comparison in terms
of hypervolume and efficient set size is observed for almost the tested benchmark.

However, the Tabu search with Fuzzy dominance get the top scores for the majority of the issues tested.
Except for some instances, where the cpu time is less important, the quality of generated Pareto front is also
consistent. And also in general the cpu time increases proportionally with the problem size and number of
iterations.
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Figure 4. Performance index.

Hypervolumes obtained by fuzzy process are significantly higher for each problem instance, although we note,
despite that, for some cases the sizes of Pareto fronts obtained based on Pareto dominance are more important
than those obtained by the fuzzy process, but the corresponding hypervolumes are less important. This shows
that the number of solutions can not be in itself a determinant factor for the quality of the Pareto front, but
must be associated with other performance measures.

5. Conclusion and future works

In this work, we studied the problem of combinatorial auctions CAP “Dynamic winner determination prob-
lem”. For this, we have developed a new “bi-objective” model based on the English auction mechanism, that
is built gradually as bidders launch their offers during the exercise period. Then an algorithm hybridizing tabu
search method with the comparison mechanism solutions based on fuzzy logic was designed, which gives the list
of winners at any time of the exercise period.

A numerical study was carried out by implementing the mechanisms developed on machine and a set of
different sizes of test problems is designed and tested, a comparison between the fuzzy and Pareto mechanisms
is performed based on the hypervolume metric. The results show that the fuzzy mechanism is promising.

For future works, it is very interesting to generalize the developed model by giving more freedom to bidders
when updating their offers, on the one hand, and try to make an approach based on an hybridization of an
exact method and fuzzy dominance on the other hand.
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