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Abstract

In this paper we introduce an evidential multi-source segmentation scheme
for the extraction of prostate zonal anatomy using multi-parametric MRI.
The Evidential C-Means (ECM) classifier was adapted to a segmentation
scheme by introducing spatial neighbourhood-based relaxation step in its
optimisation process. In order to do so, basic belief assignments on vox-
els membership were relaxed using distance-weighted combination of belief
from spatial neighbours. For the application on prostate tissues, geometric a
priori was modelled and used as an additional data source. Our method was
first experimented on simulated images to prove the improvement brought
to the ECM. A validation study of the segmentation method was then con-
ducted on 31 patients MRI data. Each MRI was manually segmented by
three independent expert radiologists, and an estimated truth was computed
using STAPLE algorithm, for inter-observer variability was taken into ac-
count. This validation proved that segmentation obtained with our method
is accurate and comparable to expert segmentation. We also show that our
segmentation scheme enables to detect and highlight outliers, which could
be interpreted by physicians as irregular tissues. The use of belief functions
also provides additional information on borders between structures. We do
believe these are sources of evidence that could help physicians/algorithms
in characterising tissues and structures.

✩Courtesy of P. Puech and A. Iancu expert radiologists from University Hospital of
Lille for contributing in this study.
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1. Introduction

It is known that acquired data is imprecise, uncertain, incomplete, and
distorted by sensors or observers it emanates from. In such a context, the
use of multi-sensor data sources brings an important enhancement in data
analysis as different sensors have their own physical characteristics, and con-5

sequently do not necessarily detect the same features of the real scene. This
statement is specially relevant in the field of medical image analysis where
the use of different imaging modalities and/or acquisition techniques allows
having complementary information on in vivo tissues, pathologies, etc. In
many cases, physicians tend to use ”multi-sensor” images to refine reliabil-10

ity of their image-based diagnosis. We shall distinguish two types of data
implied by multi-sensor. The first one is data provided by different imag-
ing modalities. The second one is provided by a single imaging modality,
using several acquisition techniques/parameters making the imaging device
act like a different sensor. In the context of MR Imaging, physicians use15

the terms ”multi-parametric”, ”multi-modal” or ”multi-spectral”. In this
field, there is an increasing interest in adapting image analysis techniques to
multi-sensor schemes [1, 2, 3, 4]. Many authors have worked on fusion and
segmentation of multi-sensor images, and this technique proved to be effi-
cient in many application fields, especially medical images analysis. Flach20

et al. [4] focused on registration and segmentation of multi-modal images
(MRI, CT scans, Ultrasound, etc.), and proposed a generic method based
on Gibbs probability distribution. Chun et al. [5] also used Gibbs-Markov
random fields (GRF and MRF) for a Bayesian classification of multi-echo
MRI. Bricq et al. [6] proposed a unifying framework using MRF for multi-25

echo brain MRI segmentation. Lee et al. [3] modelled multi-echo image
regions using a similar approach (GRF and MRF), but compared results
from Bayesian MAP and the evidential reasoning [7, 8], also known as belief
functions theory. These authors could establish that the evidential approach
was less restrictive than the MAP decision. We believe multi-sensor segmen-30

tation methods should rely on models that take into account redundancy
and conflicts between data sources. Evidence theory, also called Dempster-
Shafer theory [8, 7], is widely used in data fusion and pattern recognition
[9] as it provides strong and native modelling of imprecision, data fusion,
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eventual conflictual sources and outliers rejection [10, 11, 12, 13, 14, 15].35

There are several applications of evidence theory in medical images analy-
sis and computer aided diagnosis. In [3, 16], evidential modelling was used
for segmentation of brain MRI. In [17] it was used for segmentation of left
ventricle of the heart. In [2, 15] Bloch as well as Capelle et al. introduced
evidential classification of dual-echo brain MRI in a pathological context.40

In the context of prostate cancer diagnosis, image-based examination
routines now include both morphological studies (e.g. T2-weighted MRI)
and functional imaging (e.g. diffusion weighted and T1-weighted contrast-
enhanced MRI). These multiple imaging studies provide a huge amount of
complementary but also redundant and highly imprecise information, which45

is used by physicians in early detection and staging of prostate cancer. It
also allows a better characterisation of prostate key substructures like the
peripheral zone and the center of the gland [18]. The prostate consists of
four zones : peripheral zone (PZ), central zone (CZ), transition zone (TZ)
and fibro-muscular structure (figure 1). With aging, the periurethral tissue50

and the TZ may considerably hypertrophy, gradually compressing the CZ
and stretching the PZ. This hyperplasia essentially does not involve the PZ
and therefore, only two areas may be considered from a radiologic point
of view : the central gland (hypertrophied transition zone and periurethral
glands) and PZ. In this paper, Transition Zone (TZ) refers then to the55

complementary of PZ. PZ and TZ are key structures, as 80% of prostate
tumours are located within PZ, and TZ/Prostate volumes’ ratio can be used
to monitor dysfunctions of the gland. Manually outlining these structures
is a tedious task and not feasible in clinical routine and, to our knowledge,
no automatic segmentation method had been proposed in literature.60

In this study, we introduce a novel evidential segmentation method for
classification of prostate zones on multi-parametric MRI. Our segmentation
process is based on the Evidential C-Means (ECM) recently introduced by
Masson and Denoeux [19]. The contributions of our method are the in-
troduction of voxels’ spatial neighbourhood information in the optimization65

process of the ECM, and the use of a spatial a priori, deduced from a math-
ematical modelling based on catenaries geometry. The paper is organised as
follows: in Section 2, we briefly describe theoretical background and ratio-
nal of our study. In Section 3, we detail our methods for introducing spatial
neighbourhood and modelling an a priori -based feature. In Section 4, we70

experiment and show the improvements enabled by our contributions, and
we detail the validation of our method for use in a clinical context. Section
5 concludes the paper.
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2. Background

2.1. Belief functions theory75

Belief functions theory, also called evidential reasoning, was first intro-
duced by Dempster in 1967 [8] and was formalised as a theory by [7]. Smets
and Kennes’ Transferable Belief Model (TBM) [20] brought a coherent in-
terpretation of the underlying concept of the theory, far from the restricted
probabilistic interpretation. The modelling associates a source of data - or80

sensor - S, to a frame of discernment Ω = {ω1, ..., ωk} composed of the k

hypotheses that can be observed by S. This model extracts belief on all
subsets of Ω, called propositions. A proposition {ωi, ..., ωj} ∈ 2Ω is quan-
tified by a basic belief assignment (bba). A bba m () is a function from
2Ω = {∅, ω1, ..., ωk, ω1 ∪ ω2, ω1 ∪ ω3, ...,Ω} to the range [1, 0]. m () must sat-85

isfy the following condition:

∑

A⊆Ω

m (A) = 1 (1)

Let A ⊆ Ω be a proposition: the higher m (A) the stronger the belief on
the proposition A.

Several operations can be performed on bbas: discounting [21], combi-
nation [22], transformation to probability measures [23], etc. For a better90

readability of this paper, some of these items that are used in this work
are defined in the context of the application, and thus are detailed in the
Methods section.

2.2. Evidential C-Means (ECM)

Masson and Denoeux [19] proposed a novel C-Means classifier using belief95

functions and strongly inspired by the fuzzy c-means and the noise-clustering
algorithm [24]. This evidential classifier, called ECM, optimises a credal
partition, which could be assimilated to membership partition in Fuzzy C-
Means approach.

Let us consider a set of N patterns to be classified in C classes: Ω =100

{ω1, ..., ωC}. For each pattern Pi, 1 ≤ i ≤ N , a basic belief assignment mi is
defined on 2Ω. A N × 2C matrix M is defined as the credal partition. Each
row of M is a bba mi, 1 ≤ i ≤ N :

∀ 1 ≤ j ≤ 2C
{

Mij=mi (Aj)
Aj ⊆ Ω,

(2)
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The bbas {m1, ...,mN} are derived from patterns object data (non re-
lational) based on distance measure. In addition to the C classes, a noise105

cluster is also defined by a threshold value as introduced in [24].
ECM’s optimisation process consists in looking for a credal partition M

and a matrix V of classes centres, that both minimize the following objective
function

JECM (M,V )
∆
=











N
∑

i=1

∑

Aj⊆Ω
Aj 6=∅

|Aj |a.mi (Aj)
b .d2ij











+
N
∑

i=1

δ2.mi(∅)b (3)

where a and b are weighting parameters (default values, given in [19],110

are equal to 2), and δ is a threshold distance to the outliers ”class”. dij is
the distance from pattern Pi to Vj the “barycentre” of Aj . Indeed, using a
C-Means approach demands the definition of classes’ centre. In Evidential
C-Means, Masson and Denoeux [19] defined barycentres, which are centres
of Ω’s subsets. Let Vj (1 ≤ j ≤ 2c) be the s× 1 column vector representing115

the barycentre of element Aj ⊆ Ω. Vj is given by

Vj =
1

|Aj |
C
∑

k=1

δkjωk (4)

where δkj equals 1 if ωk ∈ Aj (0 else) and ωk is the s× 1 column vector
of features representing the centre of class ωk.

3. Methods

3.1. Definitions & assumptions120

We assume s volume data sources {Sd}1≤d≤s, and v (x, y, z) a voxel hav-
ing (x, y, z) as volume coordinates. To v (x, y, z) we associate the pattern

P = [p1, ..., ps] (5)

where pd, 1 ≤ d ≤ s, is the intensity of v (x, y, z) according to data
source d. Let Ω = {ω1, ..., ωc} be the set of c classes that represent volume
regions we have to segment. Ω is also called frame of discernment. We125

note 2Ω = {Aj}1≤j≤2c the powerset, or set of subsets, of Ω. The segmen-
tation process we propose classifies each pattern P in one of Ω’s elements,
while taking into account its spatial position (x, y, z) and information from
its connected neighbours. These neighbours are identified using a chosen
connexity system.130
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3.2. Basic Belief Assignment extraction

The first step in this evidential segmentation process is the extraction of
Basic Belief Assignment on the membership of voxels. We use the distance-
based model introduced in the ECM [19]. According to this method, for
each voxel vi a bba mi is defined on elements of 2Ω by135

∀Aj ⊆ Ω, Aj 6= ∅


























mi (Aj) =
|Aj |

−a/(b−1).d
−2/(b−1)
ij

∑

Af⊆Ω,

Af 6=∅

|Af |−a/(b−1)
.d

−2/(b−1)
if

+δ−2/(b−1)

mi (∅) = 1− ∑

Aj 6=∅
mi (Aj)

(6)

where dij is the distance from voxel vi to the barycentre of element Aj .
The set of bbas {mij} i=1...N

j=1...2C
is then used to buildM , be the credal partition

as defined in section 2.2 (equation 2).

3.3. Introducing spatial neighbourhood

The ECM classifier extracts and optimizes partial knowledge on patterns’140

membership, and each pattern is a d-dimensional vector of the associated
voxel values. In a segmentation context, this model takes no account of vox-
els’ spatial context and treats them as spatially independent objects. It is
obvious however that a voxel’s neighbourhood, as defined by a connexity sys-
tem, brings valuable information. Indeed, image segmentation supposes that145

image regions are sharing common features. Connexity systems, or neigh-
bourhood, model this assumption in region-oriented segmentation methods,
such as growing region, Markov Fields/Chains, etc.

We assume that within an image region, or class, a bba is not only a
knowledge on a voxel, but also a partial knowledge on its neighbours. Cor-150

rupted information, extracted from outliers, also known as noise patterns,
can then be fixed by its neighbours, which is one of the principles of noise-
reducing methods and filters. Thus, introducing neighbourhood information
in the ECM modelling would :

• model contextual region information in extracting knowledge on pat-155

terns/voxels.

• reduce corrupted information, related to outliers and noise.

• assimilate the ECM classifier to a region-based segmentation process.

We focus on tools proposed by belief functions theory for merging and
combining bbas. The algorithm we propose is then a modified ECM: MECM.160
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3.3.1. Combining neighbour bbas

Let mi be the bba of pattern Pi, associated to voxel vi (x, y, z). We
relax mi by combining it with bbas from spatially connected neighbours.
Spatial neighbourhood is defined by an nc-connexity system (26-connexity,
8-connexity, 6-connexity,..). Combining these bbas is possible using one of165

the evidential combination rules, for which a review can be found in [22].
Let m∩

i be the result of combining mi with bbas from the (nc − 1)
connected voxels, using a non-normalised conjunctive combination [22]. m∩

i

is defined by

∀A ⊆ Ω,
m∩

i (A) =
∑

A1 ∩ ... ∩Af = A

A1, ..., Af ⊆ Ω

m1 (A1)× ...×mnc (Af ) (7)

where m1 . . . mnc are bbas from vi’ neighbours.170

This combination rule is capable of quantifying eventual conflict between
the combined bbas, which is represented by m∩

i (∅) 6= 0. This information
could be valuable in some applications, e.g. medical images segmentation,
but is known to be hard to interpret. In a closed-world assumption context
[25], where all the hypotheses on the membership of image sites are included175

in the frame of discernment Ω, all bbas have to verify thatm∩
i (∅) = 0. When

using a conjunctive combination, an orthogonal rule, also called Dempsters
rule of combination [10], is modelled to normalise the result of bbas’ combi-
nation to fulfil the condition m∩

i (∅) = 0. Let m⊕
i be the result of combina-

tion using the orthogonal rule, it is then defined by180

∀A ⊆ Ω, A 6= ∅
{

m⊕
i (A) =

m∩

i
(A)

1−m∩

i
(∅)

m⊕
i (∅) = 0

(8)

Both conjunctive combination rules 7 and 8 can be used to introduce
spatial neighbourhood information, though there are some differences that
we interpret and discuss in the dedicated section of this paper.

3.3.2. Weighting neighbour bbas

Intuitively, the amount of trust in the information brought by a neigh-185

bour is higher (lower) when it is closer (further). We model this reliability
of neighbour bbas using a weakening factor which is inversely proportional
to the distance from the voxel. Let mk be a neighbour of mi : we define a
discounting factor 0 ≤ αk ≤ 1 such as :
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αk =
γ

d2k
(9)

where 0 ≤ γ ≤ 1 is a weighting parameter, and dk is a normalised190

distance (divided by the least distance) between vi and its spatial neighbour
vk. The optimal value of γ can be estimated by experiments/cross validation
on images with well-known ground truth.

Let mαk

k the αk-discounted bba :

∀A ⊆ Ω
{

m
αk

k (A) = αk.mk (A)
m

αk

k (Ω) = 1− αk + αk.mk (Ω)
(10)

A distance-weighted belief combination is then possible using discounted195

bbas mα1
1 , . . . ,mαnc

nc :

m⊙
i = ⊙

k=1...nc
m

αk

k (11)

where ⊙ is one of the conjunctive operators, ∩ and ⊕, defined in 7 and 8,
respectively.

This distance-based discounting is particularly relevant in the case of
some 3D imaging techniques (e.g. MRI end PET scan in medical imaging)200

where voxels are anisotropic. Indeed, these techniques use a set of paral-
lel slices to reconstruct a 3D volume, and slices’ thickness and/or distance
can be different from pixels’ size, which causes partial volume effect. For
instance, in our application, 1.5T prostate morphological T2-weighted MRI,
used in clinical routine in our radiology department, has 0.86x0.86x4.0mm3

205

sized voxels. This discounting is also relevant when using a multi-scale ap-
proach, keeping the influence of neighbours moderated by their distance
even when using rougher scales.

3.3.3. Credal relaxation

Based on the modelling of bbas extraction and correction presented210

above, we propose to modify the ECM algorithm by adding a relaxation
step within its iterative process. In Masson and Denoeux’s ECM, the latter
consists, in each loop, in extracting the credal partition M using (2) and
optimise classes’ centres V using a linear resolution of the objective func-
tion minimisation (3). The minimisation problem is resolved in [19] as the215

resolution of the following linear system :

HV = B (12)
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where










Hlk =
∑

i

∑

Aj⊇{ωl,ωk}
|Aj |a−1.mb

i (Aj)

Blq =
∑

i

xiq
∑

ωl∈Aj

|Aj |a−1.mb
i (Aj)

(13)

In our scheme, we introduce an additional step in computing the credal
partition, which we call a relaxation step. Indeed, after extracting voxels’
bbas as independent patterns using (6), we combine each bba with its spa-220

tially connected bbas using (11). The new algorithm is then detailed in the
following section.

Input n patterns
{[

P i
1, ..., P

i
s

]}

1≤i≤n

Parameters a > 0 : weighting exponent (default value 2)
b > 0 : weighting exponent (default value 2)
δ > 0 : rejection factor
0 ≤ γ ≤ 1 : neighbourhood weakening parameter
ε > 0 : convergence threshold

Initialisation Initialize V0;

Loop t← 0
Repeat

t← t+ 1;
Compute Mt using (2), (6) and Vt−1;
Compute the relaxed M⊙

t using (11);
Compute the new Vt using M⊙

t and (12);
Until ‖Vt − Vt−1‖ < ε

Table 1: MECM: Modified ECM algorithm for neighbourhood-based credal relaxation.

3.3.4. Decision and labelling

At the level of the algorithm described in table 1, bbas on membership
of voxels are extracted and optimised in a connexity-aware Evidential C-225

Means scheme. This level, called the credal level in Smets’ Transferable
Belief Model [20], is dedicated to knowledge extraction and combination.
We do believe and show, in the discussion section of this paper, that this
level of knowledge may provide valuable information to physicians, which
could help them in characterising complex tissues’ mixture and detecting230

abnormal structures/lesions. Nevertheless, we still have to make a decision
on voxels’ membership to perform a segmentation. Decision making, or
labelling, can be reached by transforming bbas into probability measures.
We use the pignistic transformation [23], in which the amount of belief
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assigned to the empty set ∅ and Ω’s subsets that include more than one235

class are equally redistributed to the singletons (classes/elements of Ω). A
probability function, called pignistic probability, is then computed using

∀ω ∈ Ω,

BetP (ω)
∆
= 1

1−m(∅)

∑

ω∈A

m(A)
|A|

(14)

4. Application to segmentation of prostate zones

4.1. Assumptions240

We apply the proposed segmentation method to segment prostate MRI
into Peripheral Zone (PZ) and its complementary (TZ) (c.f. Introduction).
We then assume Ω = {PZ;TZ}. Multi-parametric MR volumes are used for
data sources : T2-weighted, Diffusion-weighted and T1-weighted Contrast-
Enhanced MRI are used. We assume prostate contours had been delin-245

eated on these images, using our automatic segmentation method [26] and,
if needed, expert manual correction. The region of interest of our segmen-
tation process is then limited to prostate voxels.

4.2. Modelling an a priori feature

If multi-parametric MRI enhance prostate’s tissue characterisation, some250

structures may have similar intensities and the corresponding voxels may
have very similar features. The most known illustration of this issue is the
overlap of intensities from the peripheral zone with those from cysts of the
transition zone (figure 1). Physicians are able to distinguish these structures
based on their location within the prostate. One of the fundamentals of this255

a priori anatomy is that TZ is surrounded by the PZ which is located on
the posterior face of the prostate (figure 1). Indeed, relative positions of PZ
and TZ are invariant, as the TZ holds the centre of the gland, and PZ is
situated in posterior and lateral positions.

We propose to model this information as an additional a priori feature260

which brings information on voxels’ localisation inside the gland, and regard-
ing the relative positions of TZ and PZ. Intuitively, the aspect of the PZ on
axial MRI slices (figure 1) may be modelled by catenaries-like curves. The
catenary, or funicular curve, is the theoretical shape of a hanging flexible
chain or cable when supported at its ends and acted upon by its own weight265
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TZ

PZ

AFMS

TZ

BASE

APEX

Ejaculatory ducts

TZ Boundary

Posterior surface

Urethra

(a)

(b)

Figure 1: anatomic description (a) and T2-weighted MRI (b) of an average 60cc prostate
showing its zonal anatomy with a transverse section at the verumontanum level (TZ:
Transition zone, PZ: peripheral zone, AFMS: anterior fibromuscular stroma). The white
arrow in (b) shows a cyst in the TZ that has intensities that are very similar to PZ.
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and in equilibrium. This shape is similar in appearance to a parabola, and
its model in Cartesian coordinates is given by:

y = θ. cosh

(

x

θ

)

+ cst =
θ

2

(

e
x/θ + e

−x/θ
)

+ cst (15)

Where (x, y) are planar coordinates, θ is the catenary’s parameter that
characterises its curvature, and cst a constant that simply translates the
curve. Catenary curves are given in figure 2.a, for different values of θ.270
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θ=-5.14

(a)

(b)

Figure 2: (a) catenary curves ; (b) catenaries on prostate MRI (axial view)

Let us consider the zth axial plan, or ”slice”, of prostate MRI. Assuming
the gland pre-delineated, let Gz(Gx, Gy) be the gravity center of prostate
voxels from the zth axial slice. Let (Oz, ~x, −~y) be a ”gravity” Cartesian
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coordinate system such as

Oz =

(

xzmin + xzmax

2
; Gy

)

(16)

where xzmin and xzmax are minimal and maximal x coordinates of prostate275

voxels in axial plan z, respectively. xzmin and xzmax can be easily computed
by searching for minimal and maximal x-coordinates among prostate pixels
of the zth slice. For each prostate voxel Vi (x, y, z), there is one, and only
one, catenary Catθi, csti that is suspended from endpoints Xmin and Xmax

(figure 2.b), where the parametric catenary function Catθ, cst is defined by280

Catθ, cst : R→ R

x 7→ θ. cosh
(

x
θ

)

+ cst

We then compute the catenary-based features associated to voxels {vi (xi, yi, zi)}1≤i≤n,
by

Cat : R3 → R

(x, y, z) 7→
{

+ 1
θ2

if y ≤ Gy

− 1
θ2

else

(17)

where Gy is the y coordinate of the gravity centre Gz(Gx, Gy).
Cat enables then to compute, for each voxel, a new feature, a new feature

based on its location within the gland. Figure 3) shows how Cat-based285

features is used as an additional data source.
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Figure 3: Illustration of multi-source data used for segmentation of prostate zones. Data volumes are viewed in axial (a), coronal
(b) and sagital (c) views. From left to right : T2-weighted MRI, T1-weighted Contrast-Enhanced MRI, Diffusion-weighted MRI and
Cat-based Morphological a priori feature. Prostate contours are in red.
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5. Experiments and results

In this section, ECM refers to the Evidential C-Means [19] and MECM
(Modified ECM) refers to our segmentation scheme. These methods were
first confronted on simulated images to evaluate the improvements brought290

by our scheme, MECM, in a segmentation context. The choice of simulated
images was to allow control of image quality, using several contrast and
Signal to Noise Ratio values in the rendering process. Second, our scheme
was tested on real patients MRI data, to evaluate its performances and
feasibility in a clinical context. Default values were used for ECM’s and295

MECM’s shared parameters : a = 2, b = 2 and δ =
√
20. Optimal value

of MECM’s parameter γ had been estimated by the experiment detailed
in paragraph 5.2. Conjunctive non-normalised combination rule was used
when applying MECM but, as mentioned in paragraph 3.3.1, the impact of
this choice is discussed in section 6.1.300

5.1. Data

5.1.1. Simulated images

We simulated multi-source images using real prostate MRI series, con-
toured by an expert radiologist. The purpose of this operation is to render
image objects that are shaped like real prostate structures (PZ and TZ). Pre-305

delineated TZ was filled with its mean MR value. The PZ level is deduced
using a pre-determined contrast value, given by

C =
|ITZ − IPZ |
ITZ + IPZ

(18)

where ITZ and IPZ are mean MR signals of TZ and PZ. We add Gaussian
noise, with a chosen standard deviation, and we apply standard median filter
to reduce salt-pepper aspect of the noisy images. The same process was used310

to render images from T2-w, DWI and CE MRI. Figure 4 illustrates this
process. We define Signal-to-Noise Ratio of this simulated data as:

SNRdb = 10 log







∑

i=1...n
I0(vi)

2

∑

i=1...n
(I (vi)− I0 (vi))

2






(19)

where I0 (vi) and I (vi) are intensities of voxel vi before and after adding the
Gaussian noise, respectively.
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Figure 4: Image simulation process. From Left to right : original MRI with pre-delineated
PZ and TZ, PZ and TZ labelled with their respective mean level, data with Gaussian noise,
data after a smoothing median filter. First, second and third lines represent T2-weighted,
T1-CEMRI and DWI, respectively.

5.1.2. Real MRI data315

Patients MR images were provided by radiology department of Claude
Huriez hospital. Acquisitions were made on a 1.5T Philips MRI device. 31
patients exams were used in our experiments. These exams include complete
multi-parametric MRI and cancer diagnosis data. 18 patients (56.25% of
the group) had been diagnosed ”positive” for prostate cancer. Three MRI320

series were used in this study : T2-weighted with 0.48 × 0.48 × 1.25mm
voxel size, T1 CEMRI with 0.62× 0.62× 4.00mm voxel size, and DWI with
1.12× 1.12× 4.00mm voxel size. These MR volumes were rescaled to fit the
highest resolution ( 0.48 × 0.48 × 1.25mm ) in order to avoid data loss. All
features, including MRI and morphological a priori, were linearly normalised325

to the same range of values. The latter was automatically defined as the
widest range among data channels.

5.2. Optimal weighting parameter

We estimate the optimal value of parameter γ defined in equation 9.
An optimal value of γ is crucial in the process of introducing spatial neigh-330

bourhood information, and should not be correlated to specific image situ-
ations/conditions.
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We tested the MECM method on simulated images with different values
of γ, and several contrast (0.15 ≤ C ≤ 0.3) and Signal to Noise Ratios
(8dB ≤ SNR ≤ 16dB). These contrast/noise levels were chosen regarding335

real prostate MRI contrast/noise. SNRs and contrasts (mean ± std.dev) of
the MRI used in this study (T2-w, T1 CEMRI and DWI) were of 10.8 ±
1, 5dB and 0.272±0.037, respectively. Figure 5 shows MECM’s classification
error (mean ± std.dev) for 0 ≤ γ ≤ 1. The classification error is defined as
the ratio of the number of misclassified voxels (compared to ground truth)340

to the total number of voxels.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

γ

E
rr

o
r 

ra
te

 (
%

)

Figure 5: Experimental estimation of γ’s optimal value : MECM classification errors
(mean± std.dev) for several contrast and noise levels.

We could establish that classification errors have global minima for 0.5 ≤
γ ≤ 0.7. For the following experiments, we choose γ = 0.6.

5.3. Impact of contextual information : MECM Vs ECM

In this experiment, we assess the introduction of spatial neighbourhood345

information. Simulated data volumes were rendered using the process de-
scribed in section 5.1.1. Rendered images had different quality levels: Signal
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to Noise Ratios were from 18.21dB to 7.77dB, and contrast levels were from
0.1 to 0.25. We compare segmentation results from ECM and MECM to
ground truth. Segmentation accuracy is measured by Dice similarity coef-350

ficient (DSC), Overlap Ratio (OR, also called Jaccard Index), and Volume
Difference Ratios (VDR). We also measured the accuracy of manual segmen-
tation. Results of this study are detailed in table 2, and a visual comparison
of classification results is given in figure 6.

DSC OR VDR
Mean Std. dev. Mean Std. dev. Mean Std. dev.

ECM
PZ 0.6711 0.1594 0.5159 0.1819 -0.7605 0.6382
TZ 0.8383 0.0501 0.7232 0.0744 0.2006 0.1038

MECM
PZ 0.8524 0.0260 0.7433 0.0395 -0.1246 0.0732
TZ 0.9418 0.0331 0.8910 0.0592 0.0145 0.0730

Manual
PZ 0.9256 0.0286 0.8622 0.0495 -0.0481 0.0241
TZ 0.9755 0.0008 0.9523 0.0016 0.0080 0.0033

Table 2: Results on simulated datasets : ECM Vs MECM Vs manual segmentation.
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Figure 6: Illustration of the impact of introducing contextual information and morphological feature: segmentation results from ECM
and MECM (third and fourth rows from the top, respectively) are viewed in axial slices, from prostate’s apex (left) to the base
(right). TZ and PZ are labelled grey and white, respectively. First and second rows represent ground truth and simulated noisy data,
respectively.
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With a DSC of 0.941±0.033 for TZ (0.852±0.026 for PZ), segmentation355

from MECM - which introduces contextual neighbourhood information - was
satisfyingly close to expert segmentation, which DSC was of 0.975 ± 0.001
for TZ (0.925±0.028 for PZ). The MECM proved to be more accurate than
ECM, which is due to the introduction of contextual neighbourhood informa-
tion. The latter allows the algorithm acting like a region-based segmentation360

method. Visual results from MECM segmentation (fourth row), reveal two
connected regions PZ and TZ, in which the number of misclassified voxels
was significantly reduced compared to ECM classification. The modelling of
spatial connexity allowed to correct the belief on voxels’ membership; out-
liers, or noise regions, are iteratively corrected by this process, which signif-365

icantly reduces labelling errors. Overlap Ratios (mean ± std.dev) confirm
these observations, with 0.723 ± 0.074 and 0, 891 ± 0.059 for TZ segmenta-
tion from ECM and MECM, respectively. Expert manual segmentation of
TZ had an OR of 0.952 ± 0.001. As a global measure of MECM’s impact,
figure 7 shows that the method is much less sensitive to noise than ECM;370

MECM labelling errors were below 5% even for extremely noisy data (eg.
for SNR = 7.77dB), while errors from ECM reached 20%.

5.4. Results on patients MRI

31 patients multispectral MRI (described in section 4.1.2) were used to
validate and assess the performance of the proposed MECM method. In375

order to study the impact of inter-observer variability, the images were con-
toured by three experts (Obs1, Obs2 and Obs3) from radiology department
of Claude-Huriez’s Hospital. Each patient MR exam could then be asso-
ciated to three independent and different segmentations. Based on these
segmentations, we computed a consensual expert segmentation from the380

observers’ labellings using “Simultaneous Truth And Performance Level Es-
timation” algorithm (STAPLE) [27]. This algorithm allows to estimate the
hidden ground truth from a collection of different labellings of the same
object using an expectation-maximization of each labelling performance.
We then compared automatic segmentation, expert segmentation and the385

estimated STAPLE using DSC, OR, and VDR. Results of these tests are
summarised in table 3.

Computation time required by MECM, on a standard Personal Com-
puter (AMD AthlonXP CPU, 2 Gigabytes of RAM), was of 9± 2min, while
it took the radiologist 32 ± 9min ((mean ± std.dev) to delineate prostate390

1.25mm-thick T2-weighted MR Images.
Compared to STAPLE estimated truth, MECM segmentation had a me-

dian DSC of 0.88 and 0.78, for TZ and PZ, respectively. Interquartile ranges
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Figure 7: MECM Vs ECM: Mean errors rate and DSC from ECM and MECM results on
Simulated data with different SNRs.

of MECM DSCs were of [0.84, 0.90] for TZ and [0.70, 0.81] for PZ, which
means that for all patients MRI included in these tests, the MECM seg-395
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DSC OR VDR
MECM versus Median IQR Median IQR Median IQR

Obs1
PZ 0.71 [0.65 0.78] 0.56 [0.49 0.68] -0.2 [-0.31 -0.12]
TZ 0.82 [0.78 0.86] 0.70 [0.64 0.75] 0.17 [0.05 0.37]

Obs2
PZ 0.78 [0.69 0.81] 0.63 [0.52 0.68] -0.12 [-0.18 0.03]
TZ 0.89 [0.86 0.93] 0.80 [0.76 0.87] 0.05 [0 0.12]

Obs3
PZ 0.7 [0.62 0.78] 0.54 [0.51 0.64] -0.06 [-0.15 0.05]
TZ 0.81 [0.77 0.87] 0.69 [0.62 0.78] 0.08 [0.01 0.13]

STAPLE
PZ 0.78 [0.69 0.81] 0.63 [0.54 0.67] -0.11 [-0.16 0.0]
TZ 0.88 [0.83 0.90] 0.78 [0.71 0.81] 0.14 [0.04 0.16]

ECM versus

Obs1
PZ 0.62 [0.47 0.75] 0.45 [0.31 0.6] -0.14 [-0.21 0.91]
TZ 0.78 [0.7 0.81] 0.71 [0.59 0.74] 0.07 [-0.16 0.19]

Obs2
PZ 0.62 [0.46 0.74] 0.46 [0.29 0.58] 0 [-0.18 0.76]
TZ 0.76 [0.69 0.8] 0.62 [0.52 0.67] 0.07 [-0.1 0.23]

Obs3
PZ 0.61 [0.44 0.67] 0.43 [0.29 0.5] -0.21 [-0.35 0.84]
TZ 0.74 [0.65 0.79] 0.59 [0.48 0.65] 0.15 [-0.13 0.75]

STAPLE
PZ 0.66 [0.47 0.75] 0.48 [0.31 0.6] -0.14 [-0.23 0.87]
TZ 0.79 [0.73 0.82] 0.66 [0.57 0.7] -0.14 [-0.23 0.87]

Table 3: Performances (medians and InterQuartile Ranges) of ECM and MECM tested on
MRI data from 31 patients. Both ECM and MECM are compared to 3 expert observers
(Obs1, Obs2 and Obs3) and the estimated truth (STAPLE).

mentation was satisfyingly close to human observers. The quality of MECM
segmentation is visualised on figure 8; the extracted PZ seems very similar to
both expert segmentation and the estimated truth. The method specifically
succeeded in dealing with signal overlap from different structures; we notice
that the presence of cysts (with PZ’s image level) did not induce segmenta-400

tion errors (figure 8). We notice also that the apex and base slices (left and
right columns, respectively), were segmented successfully despite the critical
homogeneity and lack of contrast in these parts. These results also prove
that MECM outperforms ECM when tested on real data. This is shown
by DSC, OR and VDR values of Table 3, and is illustrated by PZ labels of405

figure 8. MECM segmentation particularly succeeds in avoiding outliers and
providing a well-connected region that represents PZ, while ECM remains
sensitive to local variations of intensities and groups prostate voxels that
share intensities, regardless of their spatial context.

We also tested the sensitivity of our method and the expert observers to410
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Figure 8: An illustration of PZ segmentation from MECM (bottom row, PZ is labelled
in purple) and ECM (PZ is labelled in blue) compared to STAPLE’s estimated truth
(third row from the top, PZ is labelled in white). Differences between segmentations from
expert observers, (Obs1, Obs2 and Obs3), are highlighted by a map of labelling frequency,
as shown in the second row. All labellings are presented on axial views from T2-weighted
MRI (top row).

the presence of tumours and to variations in prostate shape and appearance.
Tumours, age and prostate volume are major factors that affect prostate
tissues appearance on MRI studies. We partitioned the test population into
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groups, based on three criteria: age, prostate volume, and cancer diagnosis.
We used Mann-Whitney’s non-parametric t-test to assess, for each criterion,415

if segmentation accuracy were different for each group. For each criterion,
the NULL hypothesis was then: The mean DSC of the segmentation method
for group 1 is equal to the mean DSC for group 2. A p-value that is superior
to 0.05 would mean, with type1 error of 5%, that the NULL hypothesis
was true. In other word, the highest the p-value, the less sensitive the420

segmentation method to the criterion. Table 4 summarises p-values for
MECM and the three experts. These p-values show that results from MECM
were not significantly different for the groups of patients. The MECM proved
even to be much less sensitive to the presence of tumors than experts Obs1
and Obs2.425

Method
Criterion MECM Obs1 Obs2 Obs3

Patient’s age
TZ 0.8857 0.8849 0.5614 0.9800
PZ 0.8857 0.2000 0.1143 0.8857

Prostate’s volume
TZ 0.5714 0.3826 0.7857 0.9800
PZ 0.3929 0.3754 0.3929 0.5714

Tumour presence
TZ 0.2000 0.3429 0.9800 0.4857
PZ 0.9200 0.0286 0.0286 0.6857

Table 4: P-values of tests of the sensitivity of manual (Obs1, Obs2 and Obs3) and auto-
matic (MECM) segmentation to three different criteria: patient’s age, prostate’s volume
and presence/absence of tumours. The highest the p-value, the less sensitive the segmen-
tation method. (p=0.05) is the threshold below which results of the segmentation method
are significantly different for the two groups, and thus influenced by the criterion.

6. Discussion

6.1. Impact of belief combination rules

Several combination rules may be used in introducing neighbourhood
informations, and we made the choice of using conjunctive rules, normalised
and non-normalised (c.f. section 3.3.1). Figure 9 shows a comparison of430

credal partitions obtained using each one of these rules.
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Figure 9: Maps of bbas obtained with ECM (a), MECM using non-normalised conjunctive combination (b) and using Dempster’s
normalised conjunctive combination (c). Maps, in colour scale, show (from left to right) m (∅), m (ωTZ), m (ωPZ) and (m (Ω)). Top
row shows data sources (from left to right : T2-w, T1-CEMRI MRI and a priori). White Arrows 1 and 2 indicate a cyst and the
frontier between PZ and the centre of the gland, respectively.
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First, it appears that non-normalised combination allows smoother bbas
on borders of regions PZ and TZ, while Dempsters’ normalised combination
tends to be more deterministic. The use of the latter, which normalises
m (∅) = 0, may cause a loss of valuable information that can be seen on435

m (∅)’s maps from ECM and the non-normalised rule (figure 9: (a) and
(b)). Dempsters rule was proved [28] but also criticized because of its nor-
malisation step [29]. One of the alternatives is to avoid the normalisation
step and to interpret the belief assigned to ∅, sometimes called conflict in-
formation. We note that senior radiologists made very interesting analysis440

of belief maps, which provide more information than a classical binary deci-
sion. This analysis and the interpretation of m (∅) and m (Ω) in the context
of MECM’s scheme are detailed in the following paragraph.

6.2. Analysing conflict and ignorance information

In ECM’s classification scheme, m (∅) is modelled and depends on δ445

(equations 3 and 6), which can be considered as a threshold on distances to
classes’ barycentres [19] :

δ2 = λ
1

N.C





N
∑

i=1

C
∑

j=1

d2ij



 (20)

where λ is a weighting parameter (default value =
√
20).

As shown by Figure 9, there is a region of high m (∅) values within the
centre of the gland, shown by white arrow 1. The intensities from this region450

are similar to ones from PZ (c.f. first row of figure 9). According to expert
radiologist’s analysis, this region represents a cyst of the Transition Zone.
According to belief maps, voxels from this region had been assigned to the
empty set by ECM and MECM using non-normalised conjunction (rows (a)
and (b)). The MECM using normalised conjunction assigned these voxels to455

PZ (row (c)). These cysts are not modelled in the frame of discernment Ω,
and were assigned, as outliers, to the empty set ∅. To be less specific, when
using the proposed segmentation scheme with non-normalised combination
rule, bbas assigned to the empty set can be interpreted as outliers and
structures that were not modelled in the frame of discernment. In this460

case, a part of m (∅) can be used to detect one or several hypotheses that
have not been initially taken into account. In addition, non-normalised
conjunctive combination (equation 8) generates additional levels of m (∅)
induced by possible discordance - conflict - between neighbour bbas. Figure
9.b shows amount of conflict information located on frontiers between the465

two classes, PZ and TZ, where voxels of the same neighbourhood belong
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to different structures and then bring conflictual information. m (∅) maps
may then represent both regions’ borders and outliers. Even though there is
no unique interpretation of m (∅) maps, it can be helpful for guiding human
expert analysis and decision, by highlighting irregularities and “unexpected”470

structures. Less specifically, it can be used to model rejection of outliers or
unwanted noise regions in the segmentation scheme.

On the other hand, we also notice high levels of m (Ω) near regions’
frontiers, where voxels are likely to belong to one of the two structures.
These levels of belief draw a frontier between the two regions (PZ and TZ)475

and, when compared to image gradient (figure 10), it appears that m (Ω),
especially those computed using MECM, are more specific to the forntier be-
tween the regions defined in the frame of discernment. Such an information
can be used in edge detection techniques such as active contours/surfaces
in which contours computation methods (like image gradient and Gradient480

Vector Flow) have serious issues dealing with borders between regions that
are not targeted by the segmentation process.

6.3. Conclusion

In this paper, we introduced a novel evidential segmentation scheme
for multi-source images and presented its application to multi-parametric485

prostate MRI. This method is based on the Evidential C-Means classifier in
which we introduced a relaxation step to integrate voxels’ spatial neighbour-
hood information. The choice of using belief functions through the ECM
model was motivated by the ability of this theory to take into account in-
complete, redundant and complementary data sources, which are properties490

of prostate multi-parametric MRI. Belief functions modelling also offers a set
of native rules for data fusion and belief combination which we used to model
the partial knowledge brought by connected neighbours on voxels member-
ship. The use of belief combination and weakening allowed us to model the
assumption of spatial connexity of similar regions, and to adapt the ECM495

classifier to image segmentation process. The impact of this technique was
shown by quantitative and qualitative enhancement in segmentation qual-
ity. We have shown that the modified ECM scheme, MECM, modifies the
final decision and provides a more accurate segmentation: this new process
leads to a true region-based segmentation scheme, providing better con-500

nected regions with smoother boundaries. Via neighbourhood information,
the MECM also succeeded in classifying noisy voxels and outliers, and the
remaining ambiguities are mainly located on the frontiers between regions.
We also tested our MECM segmentation scheme on 31 patients prostate
multi-parametric MRI exams, and compared its performance based on three505
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Figure 10: Edge extraction using basic belief assignment to Ω. Maps of m (Ω) are shown
for ECM (c) and MECM (d). First row shows, from left to right, T2-W MRI and the
associated gradient image.

different and independent experts in order to take into account the inter-
observer variability. MECM segmentation results were satisfyingly accurate
and similar to expert truth, estimated using STAPLE multi-observer truth
estimator. Our method succeeded in avoiding ambiguous signals, e.g. PZ-
like signals from cysts in the TZ, and provided two well connected regions510

representing the two zones. This paper brings then a novel method that
allows using the approximate Evidential reasoning in segmentation appli-
cations. The scope of this paper was not to compare its performance to
other generic stae-of-the art segmentation algorithms, but to prove its fea-
sibility in the context of belief functions theory. We are currently working515

on such a comparative study which will be the subject of a dedicated paper.
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Nevertheless, in order to give the reader a basic idea on the effectiveness
of MECM, we show in figure 11 a comparison to segmentation based on
Gaussian Mixture Models (GMM). On both simulated and real multispec-
tral prostate MR data, the MECM segmentation is visually but significantly520

better than ECM segmentation, and the latter is slightly better than GMM.
A full comparison of MECM is to be expected in our upcoming paper.

Figure 11: Comparison of ECM and MECM segmentation to Gaussian Mixture Model-
based segmentation (GMM). Simulated image (1) has higher contrast than simulated
image (2).

Some limitations of the method could be identified. First one is the
use of the neighbourhood-based relaxation as an independent step, and
not as an additional criterion in ECM’s objective function. The impact525

of this limitation is basically that the convergence of our algorithm is not
based a neighbourhood-aware constraint, but is altered by an additional
step which succeeded as proven by experiments. We are looking forward to
investigate this point by integrating spatial neighbourhood in a new objec-
tive function and evaluate the impact of this new convergence. The second530
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limit is inherent to the use of evidential reasoning in multi-label classifica-
tion/segmentation: modelling belief on power sets may result in exponential
complexity of operations (combination, weakening, etc.) made on bbas with
respect to the number of classes. This issue has been raised by Denoeux and
Masson in a very recent paper [30], and their approach may make the MECM535

more feasible for segmenting more than two regions of the images. Finally,
the lack of modelling of the reliabilities of data sources which are equally
used to extract knowledge. It would be relevant to quantify, separately, the
contribution of each source to enhance bbas extraction. We notice that in
the application presented in this study, which is prostate multi-parametric540

MRI, such a quantification is only possible through investigation in corre-
lations between prostate MRI and histological studies, which is a work in
progress in our team. Another approach is also being investigated and con-
sists in applying ECM-based segmentation on each source and combine the
resulting bbas to obtain a final decision on voxel’s membership. The latter545

approach needs to be compared to the method introduced in this paper to
assess if any improvement in segmentation’s quality is possible.

30



References

[1] M. S. Atkins, M. S. Drew, Z. Tauber, Towards automatic segmentation
of ms lesions in pd/t2 mr images, anglais (2000).550

[2] A.-S. Capelle, O. Colot, C. Fernandez-Maloigne, Evidential segmenta-
tion scheme of multi-echo mr images for the detection of brain tumors
using neighborhood information, Information Fusion 5 (3) (2004) 203
– 216.

[3] R. H. Lee, R. M. Leahy, Multispectral tissue classification of mr images555

using sensor fusion approaches, Medical Imaging IV: Image Processing
1233 (1) (1990) 149–157.

[4] B. Flach, E. Kask, D. Schlesinger, A. Skulish, Unifying registration
and segmentation for multi-sensor images, Pattern Recognition (2002)
190–197.560

[5] J. Chun, I. Greenshields, Classification algorithm for multi-echo mag-
netic resonance image using gibbs distributions, Image Analysis Appli-
cations and Computer Graphics (1995) 419–426.

[6] S. Bricq, C. Collet, J. Armspach, Unifying framework for multimodal
brain mri segmentation based on hidden markov chains, Medical Image565

Analysis 12 (6) (2008) 639 – 652.

[7] G. Shafer, A mathematical theory of evidence., Princeton University
Press, N.J., 1976.

[8] A. Dempster, Upper and lower probabilities induced by multivalued
mapping, Annals of Mathematical Statistics 38 (1967) 325–339.570

[9] A. Appriou, Multisensor signal processing in the framework of the the-
ory of evidence, Lecture Series 216 on Applicationof Mathematical Sig-
nal Processing Techniques to MissionSystems (1999) 5–31.

[10] L. Fouque, A. Appriou, W. Pieczynski, An evidential markovian model
for data fusion and unsupervised image classification, in: Information575

Fusion, 2000.FUSION 2000.Proceedings of the Third International Con-
ference on, Vol. 1, 2000, pp. TUB4/25–TUB4/32.

[11] A. Bendjebbour, Y. Delignon, L. Fouque, V. Samson, W. Pieczyn-
ski, Multisensor image segmentation using dempster-shafer fusion in
markov fields context, in: Geoscience and Remote Sensing, IEEE Trans-580

actions on, Vol. 39, 2008, pp. 1789–1798.

31



[12] A.Taleb-Ahmed, L.Gautier, On information fusion to improve segmen-
tation of mri sequences, Information Fusion 3 (2) (2002) 103–117.

[13] J.-W. Lee, I.-S. Kweon, Vehicle segmentation using evidential reason-
ing, in: Intelligent Robots and Systems, 1997. IROS ’97., Proceedings585

of the 1997 IEEE/RSJ International Conference on, Vol. 2, 1997, pp.
880–885.

[14] Y. Bi, J. Guan, D. Bell, The combination of multiple classifiers using
an evidential reasoning approach, Artificial Intelligence 172 (15) (2008)
1731–1751.590

[15] I. Bloch, Some aspects of dempster-shafer evidence theory for classi-
fication of multi-modality medical images taking partial volume effect
into account, Pattern Recognition Letters 17 (8) (1996) 905–920.

[16] S.-Y. J. Chen, W.-C. Lin, C.-T. Chen, Evidential reasoning based on
dempster-shafer theory and its application to medical image analysis,595

Vol. 2032, SPIE, 1993, pp. 35–46.

[17] D. Suh, R. Mersereau, R. Eisner, R. Pettigrew, Automatic boundary
detection on cardiac magnetic resonance image sequences for four di-
mensional visualisation of the left ventricle, in: First conference on
Visualization in Biomedical Computing, 1990, pp. 149–156.600

[18] P. Kozlowski, S. Chang, E. Jones, K. Berean, H. Chen, S. Goldenberg,
Combined diffusion-weighted and dynamic contrast-enhanced mri for
prostate cancer diagnosis-correlation with biopsy and histopathology,
Journal of Magnetic Resonance Imaging 24 (2006) 108–113.

[19] M.-H. Masson, T. Denoeux, Ecm : An evidential version of the fuzzy605

c-means algorithm., Pattern Recognition 41 (2008) 1384–1397.

[20] P. Smets, R. Kennes, The transferable belief model, Artificial Intelli-
gence 66 (1994) 191–243.

[21] D. Mercier, B. Quost, T. Denoeux, Contextual discounting of belief
functions, Symbolic and Quantitative Approaches to Reasoning with610

Uncertainty (2005) 552–562.

[22] P. Smets, Analyzing the combination of conflicting belief functions,
Information Fusion 8 (4) (2007) 387–412.

32



[23] P. Smets, Constructing the pignistic probability function in a context
of uncertainty, in: Proceedings of the Fifth Annual Conference on Un-615

certainty in Artificial Intelligence, 1990, pp. 29–40.

[24] R. Dav, Clustering relational data containing noise and outliers, Pattern
Recognition Letters 12 (1991) 657–664.

[25] P. Smets, The combination of evidence in the transferable belief model,
IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (5)620

(1990) 447–458.

[26] N. Makni, P. Puech, R. Lopes, A. Dewalle, O. Colot, N. Betrouni,
Combining a deformable model and a probabilistic framework for an
automatic 3d segmentation of prostate on mri, International Journal of
Computer Assisted Radiology and Surgery 4 (2) (2009) 181–188.625

[27] S. Warfield, K. Zou, W. Wells, Simultaneous truth and performance
level estimation (staple): an algorithm for the validation of image seg-
mentation, IEEE TMI 23(7) (2004) 903–921.

[28] D. Dubois, H. Prade, On the unicity of dempster rule of combination,
International Journal of Intelligent Systems 1 (2) (1986) 133–142.630

[29] P. Smets, Resolving misunderstandings about belief functions, Int. J.
Approx. Reasoning 6 (1992) 321–344.

[30] T. Denoeux, M.-H. Masson, Evidential reasoning in large partially or-
dered sets, Annals of Operations Research (2011) 1–27.

33


