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Extreme events following bifurcation to spatiotemporal chaos in a spatially
extended microcavity laser
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The occurrence of extreme events in a spatially extended microcavity laser has been recently reported
[Selmi et al., Phys. Rev. Lett. 116, 013901 (2016)] to be correlated to emergence of spatiotemporal chaos.
In this dissipative system, the role of spatial coupling through diffraction is essential to observe the onset of
spatiotemporal complexity. We investigate further the formation mechanism of extreme events by comparing
the statistical and dynamical analyses. Experimental measurements together with numerical simulations allow
us to assign the quasiperiodicity mechanism as the route to spatiotemporal chaos in this system. Moreover,
by investigating the fine structure of the maximum Lyapunov exponent, of the Lyapunov spectrum, and of the
Kaplan-Yorke dimension of the chaotic attractor, we are able to deduce that intermittency plays a key role in the
proportion of extreme events measured. We assign the observed mechanism of generation of extreme events to
quasiperiodic extended spatiotemporal intermittency.
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I. INTRODUCTION

Macroscopic systems maintained out of equilibrium under
the influence of injection and dissipation of energy, momenta,
and particles are known to exhibit self-organization phenom-
ena [1–4]. Usually, self-organization results from the interplay
between linear gain and nonlinear saturation mechanisms.
For small energy injection and large dissipation, one expects
commonly to find a uniform steady state as global equilibrium.
As one increases the injection of energy, this stable state
suffers from instabilities which generate the emergence of
oscillations or spatial structures [1–3]. Upon further increase of
energy injection, one expects the system to display secondary
instabilities, which can generate even more complex spa-
tiotemporal behavior [5–7]. This is characterized by a complex
spatiotemporal dynamics as result of the continuous coupling
between modes in space and time [8]. Complex spatiotemporal
dynamics has been observed in extended systems, for instance,
in fluids [9–12], chemical reaction-diffusion systems [13], car-
diac fibrillation [14], electroconvection [15], fluidized granular
matter [16], and a liquid crystal light valve [17–19]. In these
experimental observations, the scenarios or routes leading
to spatiotemporal complexity is not fully understood in the
context of macroscopic systems maintained out of equilibrium
since there is not a well-established qualitative theory of
spatiotemporal chaos for partial differential equations. In
most of these studies, complex behaviors are characterized
by the tools of dynamical system theory such as spatial and
temporal Fourier analysis, wave-vector distribution, filtering of
spatiotemporal diagrams, length scale distributions, Poincaré
maps, number of defects as a function of parameters, largest
Lyapunov exponent, and Lyapunov spectrum [9–19].
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In recent years, great effort has been devoted to the
understanding of the observed large deviations in extended
deterministic systems, the so-called extreme events. As de-
fined in Ref. [20], a time recording of the dynamics of
a macroscopic systems maintained out of equilibrium may
consist of well-defined periods where a relevant variable
undergoes small variations around a well-defined level defined
by its long-time average. Occasionally, abrupt excursions
to higher values that differ significantly from the average
may appear, and these excursions are called extreme events.
These events are ubiquitous in nature. In optics, an extreme
event is characterized by a rare and intense optical intensity
pulse. The study of extreme events and extreme waves [21]
has been motivated by the analogy with rogue waves in
hydrodynamics [22], giant waves recently observed in the
ocean and whose formation mechanism is still not well
understood. Physically, as a matter of fact, some conservative
systems in optics and deep water waves in the ocean can
share a common description by the nonlinear Schrödinger
equation [23]. Most of the studies in this context have taken
place in optical fibers where the interplay of nonlinearity,
dispersion, and noise can generate extreme events [24–27].
Extreme events in conservative systems are often associated
with the merging dynamics of coherent structures [28–30],
and this mechanism has also been found in a dissipative,
fiber-laser systems [25,31]. Other mechanisms observed in
dissipative systems involve stochastically induced transitions
in multistable systems [32] or the temporal chaotic dynamics
in a nonspatially extended laser with optical injection [33].
Extreme events have been found in a variety of optical cavity
systems, such as an injected nonlinear optical cavity [34], fiber
lasers [31,35], solid-state lasers [36], optical liquid crystal
light valve with optical feedback [37], and semiconductor
lasers [33,38]. The role of spatial coupling has been studied
in the context of a pattern-forming optical system subjected
to optical feedback composed of a Kerr medium [39] or a
photorefractive crystal [40] and in an extended microcavity
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laser with integrated saturable absorber [41]. In the latter
observation, we have shown that extreme events emerge at the
onset of spatiotemporal chaos, hence allowing us to connect
the dynamical and statistical points of views. Our system
is a planar vertical-cavity surface-emitting laser (VCSEL)
cavity with integrated saturable absorber [42,43] with a high
aspect ratio, implementing a spatially extended nonlinear
dissipative system. An interesting aspect of this system is
that it does not display irregular dynamics and hence extreme
events in the absence of spatial coupling. Spatial coupling
comes from diffraction in the microcavity, which possesses
a large Fresnel number and can henceforth accommodate
a large number of transverse spatial modes. Experimental
measurements in a quasi-one-dimensional configuration and
numerical simulations allow us to identify the quasiperiodicity
mechanism as the route to spatiotemporal chaos in this system.
Moreover, by investigating the fine structure of the largest
Lyapunov exponent, of the Lyapunov spectrum, and of the
Kaplan-Yorke dimension of the chaotic attractor, we are able to
infer that intermittency plays an important role in the variation
of the number of extreme events found that correlates to
the bifurcation of spatiotemporal chaos. As we will show,
the mechanisms of spatiotemporal chaos appearance at stake
here are extended quasiperiodicity route [44] and extended
intermittence.

The characterization of chaos and spatiotemporal chaos
can be achieved by means of Lyapunov exponents [45].
These exponents measure the exponential growth rate of
generic small perturbations around of a given trajectory in
finite-dimensional dynamical systems. There are as many
exponents as the dimension of the system under study. When
at least one exponent is strictly positive, an initial perturbation
grows and the system diverges from its unperturbed trajectory:
The system is chaotic. Additional information about the
complexity of the system can be obtained from the exponents,
for instance, the dimension of the strange attractor (spectral
dimensionality), measures of the dynamic disorder (entropy)
[46], or characterization of bifurcation diagrams [44]. Exper-
imentally, one has access to the most dominant exponents
only [19,47]. The analytical study of Lyapunov exponents
is a thorny endeavor and in practice inaccessible. Hence, a
reasonable strategy is to derive the exponents numerically
by discretizing the mathematical model that accounts for the
system under study. Let N be the number of discretization
points in an extended system described by m real dynamical
variables; then the system has mN Lyapunov exponents λi .
If the Lyapunov exponents are sorted in decreasing order
and in the thermodynamic limit (N → ∞), these exponents
converge to a continuous spectrum as conjectured by Ruelle
[48]. Therefore, if the system displays spatiotemporal chaos in
this limit, there exists an infinite number of positive Lyapunov
exponents. The set of ordered Lyapunov exponents provides
an upper limit for the strange attractor dimension through the
Kaplan-Yorke dimension [46]

DKY = p +
p∑

i−1

λi

λp+1
, (1)

where p is the largest integer that satisfies
∑p

i−1 λi > 0. In the
thermodynamic limit, the Kaplan-Yorke dimension diverges

with the size of the system as a consequence of the Lyapunov
density [49].

The paper is organized as follows: In Sec. II, we describe
the experimental setup and present the experimental results
analyzed from a statistical and a dynamical point of views.
In Sec. III we introduce a model for our one-dimensional
spatially extended laser with a saturable absorber medium and
analyze its phase diagram. In addition, we analyze the temporal
evolution of the system from statistical and dynamical point
of views and compare this with the experimental observations.
The spatiotemporal chaotic behavior displayed by this model is
characterized rigorously by obtaining the Lyapunov spectrum.
The statistic of time differences between successive extreme
events and spatiotemporal extended intermittency are also
characterized. In Sec. IV we analyze the bifurcation of
spatiotemporal chaos, looking at statistical and dynamical
indicators. At last we conclude and give some perspectives.

II. EXPERIMENTAL RESULTS

To study how the number of extreme events following
bifurcation of spatiotemporal chaos evolve in an extended
system, we consider a planar vertical-cavity surface-emitting
laser (VCSEL) with integrated saturable absorber and a high
aspect ratio.

A. Setup

Figure 1(a) depicts the setup under consideration. The
microcavity laser has a VCSEL-SA structure (vertical cavity
surface emitting laser with intracavity saturable absorber)
described in Refs. [42,43], already used to demonstrate
bistable regimes, self-pulsing regimes (laser cavity solitons
[43,50–52]), and excitable regimes [53,54]. It consists of two

C M

(a)

(b)

FIG. 1. (a) Schematic representation of the experimental setup
(see text). (b) Top-view camera image of the one-dimensional (1D)
line VCSEL-SA surface below (left) and above (lower image) laser
threshold. The gold mask for the pump is colorized in yellow on the
grayscale camera image to enhance visual contrast.
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FIG. 2. Experimental observation of extreme events in a spatially extended microcavity laser. Excerpt of the temporal evolution of the
intensity at position C, corresponding logarithm of the PDF of the intensity height H and power spectral density (PSD) for different normalized
pump values P/Pth: (a) 1.02, (b) 1.17, (c) 1.20, and (d) 1.25. Extreme events (AI > 2) are emphasized in red.

specially designed multilayer mirrors for optimized optical
pumping and an active zone with two InGaAs quantum wells
for the gain section and one InGaAs quantum well for the
saturable absorber (SA) section. The laser cavity resonance is
targeted at 980 nm and the pump is optimized in a pumping
window around 800 nm. A high-power, fiber-coupled diode
laser array provides the optical pumping at 974 nm. The output
of the multimode, 800-µm diameter fiber is imaged with
a microscope objective (×20) onto the VCSEL-SA surface
to form a top-hat-shaped pumping profile. A gold mask is
deposited onto the sample surface to allow for different pump
geometries. We concentrate on an elongated-shaped pump
profile having a rectangular opening 80 µm long and 10 µm
wide [Fig. 1(b)], thus forming a line laser and a quasi-one-
dimensional geometry. A dichroic mirror allows us to separate
the excitation wavelength from the laser emission. Laser
emission is imaged with a telescope arrangement (represented
by one lens in Fig. 1 for simplicity) on a screen and on a camera
sensor plane. The screen is provided with one or two holes for

spatial selection of the detection area. It corresponds roughly
to selecting a 5-µm-diameter disk on the sample surface.
The same detection arrangement is duplicated if two different
areas are to be simultaneously recorded. The line VCSEL-SA
emission intensity is recorded with a fast avalanche photodiode
(APD, 5 GHz bandwith). The temporal signal is amplified in
a low-noise, high-bandwith amplifier (Miteq model JSMF3-
02K180-30-10P, 3 kHz–18 GHz bandwidth) and acquired with
a 6-GHz oscilloscope at 20 GS/s. Up to 50 × 106 points can be
acquired in a single trace. The near field of the laser below and
above threshold is shown in Fig. 1. Time traces, once acquired,
are treated to display the histogram of the peak intensities.

B. Temporal, statistical, and spectral analyses

To characterize the complex spatiotemporal dynamics
exhibited by the microcavity laser, we have monitored the
temporal evolution of the intensity at the center of the laser
(position C) and computed the logarithm of the probability
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distribution function (PDF) of the intensity height H and
the Fourier spectrum. Figure 2 shows representative temporal
evolution of the total intensity, corresponding logarithm of
the intensity height histograms, and their Fourier spectrum for
different values of the pump. Regular dynamical behaviors
such as oscillations or quasiperiodicity show a quite simple
temporal evolution and Fourier spectrum [55]. Then, the
Fourier spectrum is characterized by some modes and their
harmonics. This scenario changes drastically when one has
complex behaviors like chaos or spatiotemporal chaos. The
Fourier spectrum exhibits the coupling of many modes. For
normalized pump power parameter close to laser threshold,
P/Pth = 1.02, where Pth is the pump at laser threshold,
the system exhibits a quasiperiodic behavior for the wave
envelope; i.e., the dynamics of the pulse train amplitude is
harmonic, as shown in the top panel of Fig. 2. The power
spectrum exhibits a well-defined frequency and its secondary
harmonics [cf. right panel of Fig. 2(a)]. The peak broadening
is due to fluctuations inherent to the system. In this parameter
regime the PDF of the intensity height is characterized by
a quadratic decay in the tail in a semilog plot; i.e., this
distributions presents a Gaussian tail and looks like a Rayleigh
distribution for a positive-valued Gaussian process [see middle
panel of Fig. 2(a)]. We have computed the threshold for
extreme events as follows. We take the traditional criterion
considering extreme events as those having a height H twice
the significant height Hs (mean of the highest tercile of the
PDF), i.e., with an abnormality index AI = H/Hs > 2. The
height H is extracted as the maximum of the left Hl and right
Hr heights H = max(Hl,Hr ). Note that taking either H,Hl ,
or Hr as the height does not change the results significantly.
To get rid of the large number of small peaks of detection
noise at the left of the PDF, we compute the significant height
Hs only by considering events whose height is larger than the
observed maximum peak-to-peak noise amplitude, which is
about 5 mV (note that the rms noise is only 0.9 mV). This
threshold introduces a more stringent criterion for extreme
events detection. Extreme events are depicted in red under
the histograms presented in Fig. 2. We observe, as expected,
that the maximum number of extreme events is obtained in
the PDF with a non-Gaussian tail, i.e., with a normalized
pump of 1.17. As the pump is increased, the system exhibits
complex behavior characterized by intermittent pulsation of
total intensity [see left panel of Fig. 2(b)]. This dynamic is
characterized by irregular oscillation of intensity, exhibiting
sharp beats that appear in an aperiodic manner. The statistics
of the intensity heights develops long tails with an initial
exponential decay and the PDF shows signs of fat tails
with positive deviations from the exponential decay (P/Pth =
1.17). The middle panels of Fig. 2 depict the regular and
extreme events with different colors. Likewise, its respective
power spectrum shows that frequency peaks spread and mix,
which is a typical signature of chaotic behavior [55]. These
observations allow us to infer that the dynamics exhibited
by the system is a natural spatial extension of supercritical
intermittency route to chaos [56]. As we will see later, this
dynamic is described mathematically by coupling of large
number of spatial modes, which exhibit a continuous Lyapunov
spectrum [41]. Under further increase of the pump power
(P/Pth = 1.20), intermittent dynamic behavior in the temporal
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FIG. 3. Histogram of time differences between successive ex-
treme events "TEE for P/Pth = 1.17, which corresponds approx-
imately to a Poisson statistics with exponential behavior (full
line) characterized by a mean σ = 205 ns. A stretched exponential
distribution function of the form e−(t/σ)b with b = 0.95 is also shown
for comparison (dashed line). In the inset is shown a closeup of the
histogram for small time difference (with higher binning).

evolution of the total intensity is replaced by irregular oscil-
lations of the total intensity, which does not exhibit extreme
peak intensities [cf. Fig. 2(c)]. The statistics of the intensity
heights continues to present an exponential tail with rare
events; however, the tail size has been reduced substantially.
Notwithstanding, the power spectrum analysis reveals that the
observed dynamic behavior is of quasiperiodic type with the
presence of noiselike fluctuations. It is important to note that
the dominant observed frequencies seem incommensurable, in
the limits of the experimental accuracy. Hence, this evidences
that quasiperiodic behavior with fluctuations may display
rare events. For still higher pump values (P/Pth = 1.25), the
temporal evolution of the intensity shows aperiodic behavior.
However, the observation of large pulses is very rare. Figure
2(d) shows the typical temporal dynamics. The statistics for
high amplitude is Gaussian-like. Notice that the mean pulse
period decreases with pump as expected in a zero-dimensional
laser with saturable absorber, and because of the spatial
coupling, the intensity is very irregular and displays a complex
dynamics (cf. Fig. 2). Close to the Hopf bifurcation, where
the oscillatory instability disappears, the oscillation amplitude
decreases and the oscillation becomes more harmonic since
the effect of the nonlinearities decreases.

To figure out the statistics of extreme events appearance
in time, we show in Fig. 3 the histogram of times between
two successive extreme spikes with AI > 2, corresponding to
Fig. 2(b). It displays Poisson-like statistics characterized by an
exponential decrease with mean interspike time σ = 205 ns.
Hence we can conclude that in the first approximation extreme
spike appearance obeys a Poisson, memoryless process; that
is, each rare event is temporally independent from the others.
At very small times (inset of Fig. 3) there is a deviation from
the Poisson statistics with lower probability to observe an
extreme event immediately after or before one has already been
observed. This can be understood by looking at the average
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FIG. 4. (a) Temporal cross correlation Xc,m(tk,xm) (see text)
between the detector responses in points C (position xm = 0) and
M at delays tk = k"t . (b) Same as in panel (a), restricted to extreme
events at point C. (c) Average of the responses at point M and at times
where an abnormal event has occurred in the center of the laser in C.
The pump in panels (a)–(c) is P/Pth = 1.20. (d) Average over 1000
extreme events in C for P/Pth = 1.17. The extreme events considered
are superimposed and plotted in black, and the mean is in red.

shape of an extreme event in Fig. 4(d). Correspondingly, there
is a higher probability than the Poisson statistics to observe
an extreme event about 2 ns before or after a given extreme
event. This phenomenon could be related to the three sisters
effect [57]. For very large time differences, there is also a
small deviation from the Poisson statistics that is well fitted
by a stretched exponential distribution function of the form
e−(t/σ)b with stretching coefficient b = 0.95. The PDF of the
time difference between extremes has been studied in the
context of the classical extreme value theory in dynamical
systems and the first return time statistics has been shown to
be distributed according to a Poisson law [58]. However, most
of these classical theories neglect possible correlation among
extremes and some authors showed that in that case, a stretched
exponential distribution in expected [59,60]. Our result is thus
in accordance with the expected statistics of the first return
times in the case where there are very long-term correlations
in the occurrence of extreme events, as is often observed.
Interestingly, our result is in contrast to what has been reported
in other optical systems in, e.g., Refs. [21,38], where a
log-Poissonian distribution is found. This kind of distribution
has been found also in dissipative systems containing many
attractors in the presence of noise [61]. We therefore attribute
the differences in the PDF of the return times statistics to
the specific process that generates extreme events and to
the possible correlations that result. This latter point would
deserve further investigation to clarify the role of long-range
correlations and is postponed to future work.

C. Statistical spatiotemporal analysis

We now study the spatiotemporal structure of the statistics
of emitted pulses. We record the dynamics in two points of

the experimental setup, one at a fixed position at the center
of the laser and the other moving along the long line laser.
In Fig. 4(a), we plot the normalized cross correlation Xc,m(k)
of the N = 100 000 first recorded points (5 µs) between the
signal recorded at the central detector yc at point C and the
one at the moving detector ym at location M, 1 ! m ! 20 such
that

Xc,m(k) = 1
Nσyc

σym

∑

i

[yc(i) − ȳc][ym(i + k) − ȳm], (2)

where the bar symbol indicates the mean value and σ is the
standard deviation. In the central part appears a zone with
high positive (green) cross correlation followed and preceded
by two bands of negative cross correlation. The temporal band
in which the cross correlation is nonzero extends about 2 ns
from around zero delay. This demonstrates that there is indeed
a finite spatial correlation length in the system and that this
correlation length is smaller than the system size. However,
since the correlation bands are vertical at these time scales,
there is no clear evidence of propagation effects (at least with
the temporal resolution of our setup) though there is a slight
bending of the correlated band (in green). In Fig. 4(b) we
restrict the cross correlation around the points where AI > 2;
i.e., we consider only extreme events. We notice that there are
no major differences between the two cross correlations; hence
there seems not to be any statistical marker of the appearance
of an extreme event in this regime, and in particular no clear
sign of propagation of a coherent structure either. Indeed, these
results indicate that extreme height intensity peaks appear in
a spatial correlation zone and disappear almost immediately
everywhere in this zone. Correlation is therefore maximum
at zero delay for almost all positions detected. Figure 4(c)
shows the average of the responses at position M and at times
where an abnormal event has occurred in the center of the laser
in C. The average shows a clear time asymmetry around the
correlated structure: Every selected event begins with a large
amplitude dip followed by a large positive peak. This can also
be seen in Fig. 4(d). On the wings of the correlated zone we
can see another dip.

III. NUMERICAL SIMULATIONS OF A
ONE-DIMENSIONAL SPATIALLY EXTENDED LASER

WITH A SATURABLE ABSORBER MEDIUM

We can compare our results with numerical simulations of
an existing model of a one-dimensional spatially extended
laser with a saturable absorber (LSA) medium [62]. The
model consists in three coupled nonlinear partial differential
equations

∂E

∂t
= [(1 − iα)G + (1 − iβ)Q − 1]E + i

∂2E

∂x2
,

∂G

∂t
= γg

[
µ − G(1 + |E|2)

]
, (3)

∂Q

∂t
= γq

[
−γ − Q(1 + s|E|2)

]
,

for the intracavity electric-field amplitude E(x,t) and the
carrier density in the gain (saturable absorber) medium G(x,t)
[Q(x,t)]. The nonradiative carrier recombination rates are γg
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FIG. 5. Bifurcation diagram of the one-dimensional spatially
extended laser with a saturable absorber media described by Eqs. (3).
Characteristic curve µ(I ) (full line, red) along with the unstable
wave-vector regions of the the linear stability analysis [Turing
instability, gray (1); Andronov-Hopf instability, blue (2–3)]. Right
axis is µ and left axis is the modulus |k| of the unstable wave vectors.
The plane-wave Hopf curve is shown by the dashed blue line.

and γq with pumping µ and linear absorption γ . The Henry
enhancement factors in both sections are α and β respectively.
Diffraction is included through the complex Laplacian term.
Note that the processes of diffusion of carriers is neglected
in this model. Time has been rescaled to the field lifetime
in the cavity, which is calculated to be here 8.0 ps given the
cavity design parameters. Space is rescaled to the diffraction
length wd , which is 7.4 µm. We take parameters compatible
with our semiconductor system: α = 2,β = 0, s = 10, γg =
γq = 0.005, and γ = 0.5. The α and β parameter are chosen
with standard values [63]. Their values obviously influence the
instability range [62] but do not change the main conclusions
of this work. The other parameters are deduced from typi-
cal physical values for this semiconductor structure, giving
recombination times of carriers of the order of 800 ps. In
order to take into account the stiffness of the problem for
these parameters, the implicit Runge-Kutta method RADAU5
[64] is used for numerical integration. The width of the
integration region w is w/wd = 24 with a top-hat pumping
of width wp/wd = 12. Based on the results developed in
Ref. [62], we can describe the main properties of the stationary
solutions and the linear stability analysis. The system has a
first threshold for µth = 1 + γ . The plane-wave characteristics
curve of the laser is given by µ/(1 + I ) − γ /(1 + sI ) = 1,
which gives a C-shaped curve with a subcritical bifurcation
at threshold provided s > 1 + 1/γ . For a certain range
of parameters, the system also exhibits an Andronov-Hopf
bifurcation for plane waves in a given intensity range I
such that µ(I ) < µH (I ) ≡ r[2rsIγ − γg(1 + I )(1 + sI )(1 +
I + r + rsI )]/2I with r = γq/γg . When including the spatial
degree of freedom, a linear stability analysis can be performed
by checking the stability of Eqs. (3) with respect to small
harmonic perturbations of the form exp(λt + ikx). The results
are summarized in Fig. 5 for the latter set of parameters.
It reveals that the upper branch is usually Turing unstable

everywhere, hence with a band of unstable wave vectors k with
a real and positive growth rate λ (region 1 in Fig. 5), giving rise
to a complex spatiotemporal dynamics. An Andronov-Hopf
instability can also occur either for the plane-wave case
or triggered by the spatial coupling. They are associated
respectively to the regions 1 and 2 in Fig. 5.

A. Temporal, statistical, and spectral analysis of numerical
simulations of a one-dimensional spatially extended LSA model

One can see that region 1 in Fig. 5 extends to infinite
intensities, meaning that the whole branch is modulationally
unstable. The plane-wave Andronov-Hopf unstable curve
intersects the characteristic curve at µ = µH ∼ 3.08 resulting
in a self-pulsing behavior below µH for the nonspatially
extended system in the well-known scenario already described
in, e.g., Ref. [65]. There is a range of wave vectors for
which harmonic spatial perturbations are linearly unstable for
intensities below IH . For the set of parameters we choose
we have no Andronov-Hopf instabilities excited by spatial
coupling alone.

To characterize the dynamics exhibited by the one-
dimensional spatially extended laser with saturable absorber
medium from the statistical and dynamical point of views,
we have numerically simulated the set of Eqs. (3) and
considered different values of power pump parameter µ. For
small pumping values, µ < µth, the nonlaser state is stable.
When increasing the pump power parameter above threshold
(µ > µth), the laser turns on through a transcritical bifurcation
[66] and the system exhibits plane waves with oscillations in
its envelope. The left panel of Fig. 6(a) shows the temporal
evolution of the total intensity. To grasp this oscillation, we
have calculated its power spectrum. In middle right panel of
Fig. 6(a) we present this power spectrum, where the dominant
frequency and their harmonics are observed. In addition, we
have reconstructed the oscillation in its phase portrait, using
the embedding (or attractor reconstruction) method [47]. The
left panel of Fig. 6(a) displays the reconstructed limit cycles
obtained from the temporal evolution of the total intensity. We
can see that the dynamics is composed of a small amplitude
oscillation around the origin subsequently accompanied by
a large amplitude oscillation (the intensity pulse). The limit
cycle shape is typical of an attractive periodic solution that
emerged from a homoclinic Shilnikov bifurcation [67]. It is
well known that model Eq. (3) has a homoclinic bifurcation,
which is consistent with the observed limit cycle type [65]. The
statistics of the local intensity height Iloc is obtained from the
space time evolution (as shown in Fig. 9), in a similar fashion
as reported in Ref. [68] in the 1D propation in an optical fiber,
a method recently extended to 2D+1 space-time evolution in
a laser with saturable absorber [69]. A peak is found for a
simultaneous maximum of the intensity in space and time.
The PDF of Iloc has a bimodal structure that accounts for both
oscillations [cf. left middle panel of Fig. 6(a)].

By increasing the pumping value (µ/µth ∼ 1.047), the total
intensity exhibits a quasiperiodic behavior; i.e., the dynamics
is aperiodic and shows fluctuations around a constant value
of the total intensity. The left panel of Fig. 6(b) depicts the
temporal evolution of total intensity. To infer the dynamics
observed, in the middle right panel of Fig. 6(b) we show the
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FIG. 6. Numerical observation of extreme events in a one-dimensional spatially extended laser with a saturable absorber medium, Eq. (3),
with α = 2, β = 0, γg = 0.005, γq = 0.005, γ = 0.5, and s = 10. Columns account for excerpts of the temporal evolution of total intensity,
corresponding logarithm of the PDF of the theoretical local intensity height Iloc (local maxima of the spatiotemporal intensity map), the Fourier
spectrum, and phase space embedding reconstruction for different normalized pump values µ/µth: (a) 1.017, (b) 1.047, (c) 1.053, and (d) 1.33.
Extreme events (AI > 2) are emphasize in red (light gray) in the histogram. At the bottom of each histogram is a scatter plot where the points
account for the observations of their respective amplitude (vertical axis is arbitrary). The color code in the phase space diagram keeps track of
the respective intensity values.

associated power spectrum. From this spectrum, one deduces
that the observed dynamics is of quasiperiodic type [45].
This is because one clearly observes frequencies that are
not commensurable. The reconstruction of the phase portrait
shows that the limit cycle is replaced by a torus. The logarithm
of the PDF of Iloc has an L shape [cf. left middle panel of
Fig. 6(b)]. This structure is a result of the deformation of
the bimodal distribution. However, extreme events are not
observed in this region of parameters with our criterium, and
this is in good agreement with what one could expect from
the temporal evolution. By further increasing the pumping
parameter (µ/µth ∼ 1.053), the temporal evolution of the
total intensity is qualitatively similar. The power spectrum
is increasingly enriched by the presence of more modes;
however, the behavior remains of quasiperiodic type. The torus
obtained in the reconstructed phase portrait increases in size.

The logarithm of the PDF of Iloc remains qualitatively similar
too. Figure 6(c) illustrates all these results.

Continuing to increase the value of the pumping parameter
(µ/µth ∼ 1.333), the system changes qualitatively its dynam-
ical behavior; i.e., it presents a bifurcation. The temporal
evolution of the total intensity exhibits intermittent pulsation
[see the left panel of Fig. 6(d)]. This dynamics is characterized
by irregular fluctuations of intensity exhibiting sharp beats that
appear in an aperiodic manner, which is consistent with the
experimental observations in Fig. 2(b). The power spectrum is
characterized with broad peaks, which are typical of complex
behaviors such as chaos [45]. To figure out the nature of
the complex dynamics observed, we have calculated the
Lyapunov spectrum. Figure 7 shows the Lyapunov spectrum
for several values of the pumping parameter µ. This figure
clearly shows that when the system exhibits extreme events it
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FIG. 7. Numerical Lyapunov spectrum of a one-dimensional
spatially extended laser with a saturable absorber medium, Eq. (3),
for different pump parameters µ. The other parameters are the same
as in Fig. 6 and N = 512 is the total number of Lyapunov exponents
computed.

is in a regime of spatiotemporal chaos with several nonzero
Lyapunov exponents in the Lyapunov spectrum. The Lyapunov
exponents were computed using the strategy proposed in
Refs. [70,71]. We have reconstructed the respective attractor
in phase space and a complex object is observed [see the right
panel of Fig. 6(d)], which clearly cannot be embedded in three
dimensions. That is, its geometrical characterization requires
a higher embedding dimension. The logarithm of the PDF of
Iloc for the 1D laser with saturable absorber is shown in the
left middle panels of Fig. 6(d). In this regime, the system
displays a distribution with long and exponential decay, which
is similar to the one found in Ref. [41] using the total intensity
as an observable. Extreme events are depicted in dark color
(red) under the histograms presented in the left middle panel
of Fig. 6(d), and a lot of extreme events are observed in this
regime. We note that the observed dynamic is in excellent
agreement with experimental observations (cf. Figs. 2 and 6).
The shape of the PDF of H seems to be correlated to the
presence or absence of a Andronov-Hopf bifurcation: Only
when it is present can we observe a heavy-tailed distribution.
At the transition between the Hopf-Turing and Turing-only
regions we observe that a maximum number of extreme events
are generated (for µ = 2.9).

We have conducted an analysis of the return time statistics
between extreme events. Figure 8 summarizes the main
features of the observed dynamics. The histogram of time
differences between successive extreme events (or waiting
time) is represented in Fig. 8(b). As noted earlier, the observed
temporal dynamics is not completely described by a Poisson
process, but is rather well described by a stretched exponential
distribution function with stretching parameter equal to 0.5.
To highlight the differences between these processes we have
calculated the cumulative distribution function (CDF) [72].
Figure 8(c) shows the comparison between the cumulative
distribution function of waiting times obtained from numerical
simulation of Eqs. (3) and for a Poisson process. Notice that

simulation
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FIG. 8. Statistical characterization of time interval between nu-
merically observed extreme events from Eqs. (3). (a) Maximal
time duration T within which a least one extreme event should
be observed vs pump parameter. Numerical simulation (squares)
compared to an exact Poisson process (triangles) with the same rate
of events over tmax = 40 000. (b) Waiting time distribution (WTD)
between successive extreme events for µ = 2.0. The dashed line is
a fit with an exponential distribution and the dash-dotted line is a
fit with a stretched exponential with stretching parameter 0.5. (c)
Cumulative distribution function (CDF). The horizontal dot-dashed
line corresponds to 0.975 and the abscissa of its intersections with
the CDFs gives the maximal time duration.

there is a qualitative similarity between these two processes.
Moreover, we have compared the maximal inter-arrival time
[cf. Fig. 8(a)] versus the pump parameter µ for both processes.
This value is obtained by considering the time T such that
the CDF reaches 0.975 [72]. From the above analysis, we
conclude that the time difference between extreme events is
not a Poisson process, but is well described by a stretched
exponential distribution function. The difference with the
memoryless Poisson distribution is attributed to correlations in
the spatiotemporally chaotic dynamics. This observation is in
agreement with the experimental results of the time difference
between extreme events for the total intensity analyzed earlier
(cf. Fig. 3).

B. Spatiotemporal extended intermittency

As mentioned earlier, the total intensity of the system
exhibits intermittent behavior when the system is in the
regime of spatiotemporal chaos [cf. left panel of Fig. 6(d)].
Spatiotemporal chaotic intermittency was intensively studied
in the context of the Ginzburg-Landau equation [73,74] and
coupled-map lattices [75]. The main feature of this type of
spatiotemporal chaotic behavior is to exhibit self-similarity
with a Sierpinski carpet structure type. Figure 9 shows the
numerical spatiotemporal evolution of the intensity of the
intracavity electric-field envelope |E| in the complex spa-
tiotemporal regime. Considering a long record of the temporal
evolution of the intracavity field [see Fig. 9(a)], we observe
the emergence of a large number of peaks. To emphasize that
these peaks correspond to extreme events, small portions of
spatiotemporal diagram are extracted in the insets of Fig. 9(a).
Clearly, among the complex oscillations in the spatiotemporal
diagram, extreme events are observed with a large amplitude
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FIG. 9. Spatiotemporal intermittence evolution of the intensity of the intracavity electric-field envelope E(x,t) of a one-dimensional
spatially extended laser with a saturable absorber medium, Eq. (3). (a) Long record of the spatiotemporal evolution of the intracavity field.
Insets account for excerpts of spatiotemporal diagram and for spatial profile of the three highest intensity peaks observed in the long record.
(b) Spatiotemporal evolution plotted in false color with two different color scales in order to highlight the intermittent behavior.

that is several times greater than the average. To understand the
complex dynamics exhibited by the spatiotemporal diagrams,
we have changed the color scale to monitor the dynamic
of modes with large and small amplitudes. Spatiotemporal
diagrams with different color scale are illustrated in Fig. 9(b).
One can infer that high-amplitude modes are intermittent and,
as we have shown previously, they are statistically memoryless.
On the other hand, the dynamics of the low-intensity peaks is
complex. An obvious self-similar structure is not observed, as
is the case of the spatiotemporal intermittency. However, the
observed dynamics is intermittent. Hence, we have termed our
observed dynamics as spatiotemporal extended intermittency.
A deeper characterization of this type of dynamic is in
progress.

C. Statistical spatiotemporal analysis

From the numerical integration of Eqs. (3) we can also
calculate the temporal cross-correlation of the intensity I (x,t)
from Eq. (2). The result is shown in Fig. 10. The behavior
is very similar to what was observed in the experiment in
Fig. 4. There is no sign of propagation of coherent structure is
the system, except for very low pump value µ = 1.6, very
close to laser threshold [Fig. 10(a)]. There is, however, a
spatial correlation length clearly visible in the system. The
size of the correlation length decreases with pump, as the
system dynamics become more complex. A close inspection
of the central part of Fig. 10(c) reveals that the temporal cross
correlation has positive values before and after the maximum,
a feature that may be exploited for predicting extreme events
in the short term.

IV. EXTREME EVENTS FOLLOWING BIFURCATION TO
SPATIOTEMPORAL CHAOS

As we have shown in previous sections and in our previous
work [41], the appearance of extreme events is strongly related
to the emergence of spatiotemporal chaos. To emphasize the
above statement, we show in Figs. 11(a) and 11(c) respectively

the proportion of extreme events pEE and the excess kurtosis
γ2 as function of pump power parameter for two different
observables: the height of the total intensity across the laser Itot
and the intensity of the spatiotemporal peaks Iloc. The excess
kurtosis is given by γ2 = µ4/µ

2
2 − 3 with µi the centered

moment of order i. The proportion of extreme events and
the excess kurtosis are strongly correlated in both cases. A
natural order parameter describing the change of dynamical
behavior is the largest Lyapunov exponent and the Kaplan-
Yorke dimension. For stationary solutions, the corresponding
largest Lyapunov exponent is negative and the dimension of
Kaplan-Yorke is zero. In the case of periodic or quasiperiodic
solutions the corresponding largest Lyapunov exponent and the
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FIG. 10. Numerical cross correlation of the response between
the center of the laser (point C, xm = 0) and a sliding point M (xm).
Pumping is µ = 1.6, 2.0, 2.9 ,3.4 [panels (a)–(d), resp.]. In panel
(c), an inset shows a closeup of the central part.
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FIG. 11. Emergence of extreme events and spatiotemporal chaos
according to different observables. (a) Proportion of extreme events
pEE (×) and excess kurtosis γ2 (∗) as function of pump parameter µ

considering the height of the total intensity across the laser. (b) Largest
Lyapunov exponent max(λi) (squares) and Kaplan-Yorke dimension
DKY [circles, from Eq. (1)] as function of pump parameter µ. (c)
Proportion of extreme events pEE (×) and excess kurtosis γ2 (∗) as
function of pump parameter µ considering the intensity of the local
spatiotemporal maxima.

Kaplan-Yorke dimension are both zero. For chaotic dynamical
behaviors the corresponding largest Lyapunov exponent and
Kaplan-Yorke dimension are strictly positive. Figure 11(b)
shows the largest Lyapunov exponent max(λi) and Kaplan-
Yorke dimension DYK as function of pump power parameter
µ. Looking at Figs. 11(a) and 11(c) we see that whatever
the observable considered, extreme events appear only when
the Kaplan-Yorke dimension and the maximum Lyapunov
exponent are strictly positive. This means that spatiotemporal
chaos is a prerequisite to observe extreme events. Moreover,
as the spatiotemporal complexity increases sharply with the
pump (see the initial increase of DKY and max (λi) with µ),
the proportion of extreme events and the excess kurtosis grow.
There is a maximum in the proportion of extreme events that
depends on the observable considered, and then the proportion
of extreme events decreases with the pump, in a way which
seems not completely correlated neither to the Kaplan-Yorke
dimension nor to the maximum Lyapunov dimension. If the ini-
tial evolution of pEE(µ) seems to follow closely the one of the
maximum Lyapunov exponent until µ ≃ 3.0, the evolution of
both quantities then diverge, as we have checked by comparing
both quantities for values of the pump up to µ = 5. Therefore,
the largest Lyapunov exponent is not totally correlated with the
proportion of extreme events. Abrupt variations of the largest
Lyapunov exponent or of the Kaplan-Yorke dimension can be
a manifestation of instabilities of a chaotic state. A classical
example of this behavior for the largest Lyapunov exponent
can be found with the logistic model [76]. This phenomenon
can generate the spatiotemporal analog of chaos crisis, as
theoretically demonstrated in a laser model in Refs. [77,78].
We have looked for this behavior in our data but we could not
reliably extract the derivative of the Kaplan-Yorke dimension
or of the maximum Lyapunov exponent with respect to the
pump. We can, however, conclude from the above results that
extreme events in our spatially extended microcavity laser
follow bifurcation to spatiotemporal chaos. Now if we compare
the two observables Itot and Iloc, we see that in both cases the

evolutions of pEE and of γ2 are correlated in each case. The
maximum proportion of extreme events is also shifted in the
same direction with respect to the maximum of the excess
kurtosis. An interesting feature lies in the fact that pEE peaks
for a lower value of the pump in the case of the observable
Iloc. The proportion measured is comparable up to µ ∼ 2 and
is then very different with opposite trends. We attribute this
difference in the fact that for low pump values, the correlation
length in the system is large as testified by Fig. 10. Hence, there
is hardly more than one large peak in the spatial section that
dominates the observable value and gives rise in both cases to
extreme events. By contrast, the correlation length decreases
if the pump is large; some remaining large peak intensities
can add up to form extremes in the total intensity height that
are not present in the spatiotemporal maxima. For very large
pump both cases agree and a lower proportion of extremes
are observed, a consequence of a complex dynamics with few
excursions to extreme values.

V. CONCLUSIONS

We have investigated experimentally and theoretically the
emergence of extreme events in a quasi-1D broad-area laser
with a saturable absorber. We have analyzed the physical
origin of extreme events that occur because of the onset of
deterministic spatiotemporal chaos in the system. Hence, the
system exhibits extreme events when the system has qualitative
changes that lead to complex dynamical behaviors. We have
characterized the chaotic behavior through the calculation of
the Lyapunov spectrum, the Kaplan-Yorke dimension, the
largest Lyapunov exponent, reconstruction embedding, and
frequency analysis. The statistical and dynamic analysis lead
us to conjecture that quasiperiodic behavior may exhibit
extreme events. Studies in this direction are in progress. In the
chaotic regime, we conclude that the time difference between
extreme events is close to but not strictly a Poisson process
and can be described by a stretched exponential distribution
function in the tail of the distribution. Short-term and very
long-term correlations in the dynamics explain the deviations
from a memoryless Poisson process. From these analyses,
we assign to the spatiotemporal chaotic behavior exhibited
by the system the mechanism of spatiotemporal extended
intermittency.

The theoretical analysis presented in this work is based on
deterministic processes. However, it is known that inherent
fluctuations in macroscopic multistable systems—noise—can
induce extreme events through noise-induced transitions [32].
The parameter region that we have considered in the present
study is monostable, which ensures that noise with small
intensity level only generates degradation of the observed
signal. Numerical simulations of a one-dimensional spatially
extended laser with a saturable absorber medium with additive
noise, Eqs. (3), present therefore a similar dynamical behavior
to that observed in the deterministic case.

Irregular dynamics is obviously a prerequisite for the
observation of extreme events, but we show that the proportion
of extreme events is directly linked to the evolution of the
Kaplan-Yorke dimension and largest Lyapunov exponent. A
higher dimensional dynamics does not necessarily lead to
a higher number of extreme events. The origin of extreme
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events in that case is thus to be found in the nature of
the spatiotemporal complexity that takes place, and thus it
could offer interesting prospects for applications to control
them by changing the system geometry or the nature of the
coupling.
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