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We present a new experimental concept suitable for partially compensating the inter-core group delay dispersion
in a multi-core fiber (MCF). First we map out the group delays of all 169 single-mode cores of a MCF using
phase-shifting spectral interferometry and find the group delays distributed with standard deviation 123 fs in a
30 cm long MCF. We then detail and apply the compensation scheme based on two wavefront shapers with which
we narrow the group delay distribution to 65 fs. These results are relevant for lensless endoscopes employing
femtosecond excitation, and we quantify the performance gain in a lensless endoscope with 150 fs laser pulses
as excitation and discuss possible generalizations of the concept. © 2015 Optical Society of America
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1. INTRODUCTION

Recent advances in instrumentation for wavefront control such
as two-dimensional spatial light modulators (2D-SLMs) and de-
formablemirrors (DMs) havemade it possible to unscramble the
modes of light that traverse a complex medium [1], essentially
enabling the transmission of spatial information through said
complex medium. Salient examples are the so-called lensless en-
doscopes, which in effect achieve imaging through amulti-mode
waveguide [2–5]. In these references, the common factor is
that a multi-mode fiber (MMF) was employed as the waveguide.
The properties of MMF have repercussions; in particular, the
mode dispersion in MMF dictates that a long coherence length
light source must be used, although delivery of 520 fs pulses
through MMF has recently been demonstrated though at the
expense of spatial degrees of freedom [6]. A different approach
to lensless endoscopes is to employ not aMMF, but a multi-core
fiber (MCF), as the waveguide [7–9]. Provided the cores are
single-mode and exhibit negligible cross-talk, constraints on
light source coherence length are relaxed to the point that a
femtosecond light source can be used, as we have shown [9].
However, the relaxation of constraints is not complete as it turns
out that the group delay of individual cores is not identical. We
shall term this residual differential group delay “inter-core group
delay dispersion (GDD)”. It can be thought of as the MCF’s

counterpart to the MMF’s mode dispersion. Inter-core GDD
(where spatial modes localized to individual cores experience
different group delays) is different from the well-known chro-
matic dispersion (where different colors experience different
group delays), and the two should not be confused.

Inter-core GDD is a significant obstacle in the realization of
lensless endoscopes for nonlinear imaging. The origin of inter-
core GDD may be broadly attributed to (1) intrinsic contribu-
tions stemming from material and waveguide dispersion and
(2) extrinsic contributions that arise from bending or twisting
the MCF. A compensation of both of these factors has re-
mained a challenge to the research community. Inter-core
GDD was not treated in our latest contribution [9]. In this
work, we aim to address the measurement and compensation
of the inter-core GDD that arises from the intrinsic contribu-
tions. Here, we detail a method based on phase-shifting spectral
interferometry for directly measuring the group delay incurred
by a femtosecond pulse in each core of a MCF with 169 cores.
We then detail and demonstrate a scheme for compensation of
inter-core GDD and show the resulting performance gain. We
note that a recent paper reports the successful measurement of
the inter-core dispersion of propagation constants in a 37-core
MCF with strong coupling between cores [10]. Here, we
examine the subject in a MCF with uncoupled cores.
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2. EXPERIMENT

A. Multi-Core Fiber

Figure 1(a) shows an electron micrograph of the double-clad
silica MCF with N � 169 cores used in this study and that
is identical to the one we used in [9]. It was fabricated by the
stack and draw process [11]. First, Ge-doped rods drawn from
a preform (Prysmian Group, parabolic refractive index profile,
maximum difference of 31 · 10−3 compared to silica) were in-
serted into a stack of 169 capillaries. This “double-stacking” step
was required in order to achieve very low coupling between the
single-mode cores of the final MCF. This multi-core preform
was then drawn into several all-solid canes. One of these canes
was put in a jacketing tube containing the air-clad structure
(made by stacking 61 hollow capillaries between two tubes)
and drawn to get a MCF with the following parameters: pitch,
11.8 μm; mode field diameter of each core, 3.6 μm; diameter of
multi-mode inner cladding, 250 μm; numerical aperture (NA)
of multi-mode inner cladding, 0.65; total outer diameter,
360 μm. The cross-talk was extremely low, and the measured
coupling from one core to its nearest neighbor in a 30 cm long
section was less than −25 dB. Figure 1(b) shows the convention
for core indices i used in the following.

B. Setup

Figure 2 shows a sketch of the experimental setup. The pulses
from a Yb femtosecond laser (Amplitude Systèmes t-Pulse,
1035 nm, 150 fs; 50 MHz, 1.3 W, horizontally polarized) pass
through magnifying telescopes (not shown) so that the colli-
mated beam overfills the aperture of the DM (IRIS-AO,
PTT-489, 163 segments), each segment of which has a piston,
a tip, and a tilt degree of freedom [12]. With the piston of
segment i, a phase can be imposed on the light impinging
on that segment, ϕproximal

i � 2 · 2π · piston∕λ. Similarly, tip
and tilt impose transverse k vectors Δk�i�x � 2 · 2π∕λ ·
sin�tip� and Δk�i�y � 2 · 2π∕λ · sin�tilt�. The Fourier plane
of the DM is in the plane Σ1. The DM is imaged (f 1, f 2)
onto a 2D-SLM (Hamamatsu X8267, 768 × 768 pixels,
20 mm × 20 mm). On the 2D-SLM a phase mask is inscribed
that consists of N � 169 hexagonal segments of chirped
gratings on a triangular grid. Each hexagonal DM segment
is imaged onto a hexagonal segment on the 2D-SLM. The
phase mask Φ�i�

2D-SLM of segment i centered on (X i, Y i) on
the 2D-SLM is of the form

Φ�i�
2D-SLM�X ; Y � � sawtooth

�
f 1

f 2

Δk�i�x X � f 1

f 2

Δk�i�y Y

� π

λf conc

��X − X i�2 � �Y − Y i�2�
�
: (1)

Here Δk�i�x and Δk�i�y are the same as those introduced
previously, and the f 1∕f 2 factor takes into account the mag-
nification from DM to 2D-SLM. The function of the 2D-SLM
mask can be understood as follows. The first and second
arguments of the sawtooth function give rise to a grating blazed
in the direction of the incoming beamlet and with period
that gives a diffracted beamlet with transverse k vector equal
to zero. Here, in general, the norm of Δk⃗�i� was either 0 or
0.0262 μm−1 corresponding to a period of 20 pixels on the
2D-SLM. Note that in this configuration of DM and 2D-
SLM, all beamlets of equal Δk⃗ meet at the same point in
the plane Σ1. In addition all beamlets, whatever their Δk⃗,
are diffracted from the 2D-SLM parallel to one another,
and so they all pass through the same point in the plane
Σ3. Put differently, we employ the DM’s tip/tilt degree of free-
dom to divide the beamlets into three subgroups, each destined
to traverse a certain zone of a compensation plate. The setup
can be dynamic—thanks to the tip/tilt degree of freedom the
members of the subgroups can be interchanged on the fly.
Figure 3 shows a schematic view of this concept. The last term
in the argument of the sawtooth is responsible for setting up a
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Fig. 1. Multi-core fiber with 169 single-mode cores and multi-
mode inner cladding. (a) Electron micrograph of the multi-core fiber.
(b) Core numbering convention used in the text.
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Fig. 2. Sketch of the experimental setup. Fs-laser, femtosecond la-
ser; λ∕2, half-wave plate; Pol, polarizer; 2D-SLM, two-dimensional
spatial light modulator; ID, iris diaphragm; CMOS, CMOS camera;
OSA, optical spectrum analyzer; PC, personal computer; DM,
deformable mirror; APD, avalanche photodiode. f 1 � 150 mm,
f 2 � 300 mm, f 3 � 500 mm, f 4 � 80 mm, f 5 � 75 mm, f 6 �
4.51 mm, f 7, 20× microscope objective, f 8 � 150 mm, and
f 9 � 200 mm. All lenses are in the 4-f geometry unless otherwise
noted. The insets show sketches of phase maps and intensity maps
of the laser beam in the different planes. The DM can impose three
possible transverse k vectors on the beamlets; this leads to three spots
in Σ1 (Fourier plane of DM, the spots are destined to traverse different
zones of the compensation plate). The SLM (image plane of DM) can
impose three possible transverse k vectors on the beamlets so that all
beamlets are diffracted parallel to one another; in addition, a wavefront
curvature is imposed on each beamlet, which leads to an array of spots
in Σ2 (which will be imaged onto the MCF) and a single spot in Σ3

(Fourier plane of Σ2) containing all the beamlets.
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concave mirror in the first diffracted order with focal length
f conc � 300 mm. Each segment i will then diffract a conver-
gent beamlet into the first order. In the first order, the entire
2D-SLM thus acts as an array of concave mirrors producing a
hexagonal array of spots in the plane Σ2. The diffraction effi-
ciency into the first order is around 25%. The plane Σ2 is im-
aged (f 3, f 4, f 5, f 6) onto the proximal endface of the MCF.
A CMOS camera is conjugated to either the bundle distal end-
face (f 7, f 8, “CMOS1” in Fig. 2) or its Fourier plane (f 7, f 8,
f 9, “CMOS2” in Fig. 2). The probe (∅62.5 μm, MMF) of a
fiber-coupled optical spectrum analyzer (OSA) (ANDO
AQ6315A) is also placed in the Fourier plane for phase-shifting
spectral interferometry [13] to measure the group delay Δt�i�g of
each core (see Appendix A).

C. Compensation Plates

We machined two sets of glass plates with one or more holes
that together acted as the group delay compensating element.
The first set, sketched in Fig. 4(a), consisted of three plates: the
first two were 100 μm thick microscope coverslips (Menzel
Gläser) with one and two holes, respectively. A pass through
one coverslip corresponds to an additional group delay of
170 fs. The third was an opaque plate (a microscope coverslip
covered with aluminum foil) with three holes acting as a beam
block. The second set was identical apart from the fact that the
coverslips were 170 μm thick corresponding to a delay of
300 fs. The ≈∅700 μm holes were drilled in the coverslips
by laser ablation (using an Amplitude Systèmes S-Pulse HP
laser). We used galvanometric mirrors and an f-theta lens to

drill the samples along circular drilling patterns with the follow-
ing irradiation parameters: beam diameter 120 μm, repetition
rate 1 kHz, and pulse energy 0.5 mJ. The time to drill one hole
was 5 s. Figure 4(b) shows microscope images of the machined
coverslips. The final compensation plates were obtained by
sandwiching the individual plates together separated by a
200 μm spacer. For compensation of inter-core GDD the
compensation plate was placed in the plane Σ1 (see the inset
in Fig. 2 as well as Fig. 3), allowing us to impose one of three
additional group delays on a beamlet according to its Δk⃗ as
sketched in Fig. 4(a). We would like to point out that
the parameters of the compensation plate depend only on the
resolution and the range of the desired compensation, and not
the number of cores of the MCF. Hence, these plates could be
scaled up for any number of cores.

3. CALCULATION OF GROUP DELAY EFFECTS

We start out by analyzing the impact of inter-core GDD by
performing analytical calculations with relevant parameters.
These calculations will be a guide to the experiment.

We first quantify the effect of inter-core GDD on the
duration FWHM and the peak intensity in the reconstructed
focus at the distal end of the MCF as well as the two-photon
excited fluorescence (2PEF) generated in the focus. The focus
field Edistal is defined as the coherent superposition of all the N
beamlets emanating from the N cores. For simplicity we as-
sume that all beamlets are identically equal to E, differing only
in their group delay Δt�i�g . We assume that all the beamlets are
in phase, giving

Edistal�t� �
XN
i�1

E�t − Δt�i�g �: (2)

For now, fΔt�i�g g is assumed to be normally distributed with
standard deviation σ. For a given σ, we generate 100 random
fΔt�i�g g, and an average distal field hEdistali is calculated from
Eq. (2). The three curves in Fig. 5 then come about as follows:
FWHM, the FWHM of jhEdistalij2; max(I), the maximum of
jhEdistalij2; 2PEF sig.,

R jhEdistalij4dt . From Fig. 5 it can be seen
that all the parameters, duration FWHM, peak intensity, and
generated 2PEF signal, deteriorate rapidly with increasing σ.
Particularly, the generated 2PEF signal decreases by a factor
of 7.5 (to 0.134) when σ equals the pulse duration FWHM.

DM f1 1 f2   2D-SLM

+1 tg
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+2 tg
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plate

Fig. 3. Schematic view of the concept for compensating inter-core
GDD. Annotations as in Fig. 2.

Fig. 4. (a) Sketch of the individual plates making up a compensation
plate showing the alignment of holes. The compensation plate is located
in the plane Σ1. (b) Microscope images of each constituent plate.
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Fig. 5. Calculated mean parameters of an uncompensated pulse
that has traversed a MCF in which the group delays are normally dis-
tributed with a standard deviation σ. Assumed pulse duration
FWHM � 150 fs. See the text for details.
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We now calculate the effects of the envisioned compensa-
tion scheme. The scheme allows us to impose additional group
delay on arbitrary beamlet i in units of δtg [see Fig. 4(a)]. The
compensated group delays Δt�i�comp;g are then

Δt�i�comp;g � �Δt�i�g −min�Δt�i�g ��mod δtg : (3)

And the compensated distal field is

Edistal�t� �
XN
i�1

0.96⌊�Δt
�i�
g −min�Δt�i�g ��∕δtg⌋E�t − Δt�i�comp;g�: (4)

Here, ⌊…⌋ denotes rounding down to the nearest integer. The
“0.96” term is there to emulate the reflection losses present if
each δtg were to be applied by a pass through a glass plate. The
outcome of this compensation process gives Fig. 6. This com-
pensation scheme is seen to give a significant improvement over
the uncompensated case (the curves asymptotically approach
the uncompensated case going to the right). In particular, the
2PEF signal increases by a factor of 3.4 (from 0.134 in Fig. 5 to
0.45 in Fig. 6) for a glass plate thickness of 90 μm correspond-
ing to δtg � 156 fs.

4. RESULTS

A. Measurement of Group Delays

Using phase-shifting spectral interferometry (see Appendix A)
we measure fΔt�i�g g in a 30 cm long MCF suspended at points
28 cm apart. The MCF has no twist even though it was not
held completely straight. So, all cores have the same geometry,
and no contribution of deformation to inter-core GDD is
expected—only the intrinsic contributions of material and
waveguide dispersion are expected. The outcome of the mea-
surement is presented in Fig. 7(a) as Δt�i�g versus core index i.
Figure 7(b) presents the histogram of the data set. The distri-
bution has a standard deviation of σ � 123 fs and resembles a
normal distribution. We have not found any correlation be-
tween the Δt�i�g of a core and any parameter of that core.
However, in the MCF fabrication the Ge-doped rods were
stacked in no particular order compared to their position in
the original preform, so slow longitudinal variations in the pre-
form could be responsible. Additionally, the double-stacking

step could be responsible for introducing slight random defor-
mations that lead to inter-core GDD.While σ is on the order of
the laser pulse duration, the ratio of σ to the group delay
imposed by the entire length of MCF equals 8.7 · 10−5, which
nevertheless testifies to a high homogeneity between cores. We
conclude that the intrinsic inter-core GDD is random and
normally distributed. At this point it is interesting to compare
our results with [10], by Mosley et al., who used a different
approach (based on intensity measurements and a Markov
chain Monte Carlo process as a reconstruction algorithm) to
map out the propagation constants in a 37-core fiber. Two dis-
crepancies are immediately apparent: (1) we observe a higher
relative standard deviation compared to the estimated width
of the normalized distribution of the propagation constants
(Fig. 4(d) in [10]), at least a factor of two, judging by eye;
and (2) contrary to [10], we observe no systematic differences
between the inner and outer cores—i.e., a sliding average of
the data in Fig. 7(a) would yield the same mean value. Also,
no bias is apparent from the histogram in Fig. 7(b). We have
insufficient information to establish the origin of these discrep-
ancies, but they might stem from differences in fabrication.
Another interesting remark can be made here—as also pointed
out in [10], by Mosley et al., the coupling between two cores is
dependent on the difference in propagation constants between
the two cores, being highest for zero difference. In MCF for
lensless endsocopy low coupling is highly desirable, so inter-
core GDD could actually be seen as beneficial, and there
may be an optimal trade-off between inter-core GDD and cou-
pling between cores.
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Fig. 6. Calculated pulse parameters of a compensated (after the
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Fig. 7. Measured inter-core group delay in 30 cm MCF.
(a) Measured group delay Δt�i�g of core i relative to i � 0.
0 ≤ i ≤ 168. Note that the error bars, three standard deviations, refer
to the measurement uncertainty of a single delay measurement.
(b) Histogram of the measured Δt�i�g with 21 bins of 40 fs width.
The standard deviation, obtained from a Gaussian fit to the histogram,
is 123 fs. (c) Calculated histogram with the group delay compensation
scheme using δtg � 170 fs; the standard deviation is 65 fs.
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It could be observed that the error bars in Fig. 7(a) appear to
be larger with increasing core index. This occurs due to the
power imbalance between the cores, which leads to a lower
fringe contrast in the phase-shifting interferometry measure-
ment. Hence, we might expect some of these Δt�i�g values to
be erroneous. In order to establish the validity of the Δt�i�g mea-
surement in Fig. 7(a), we experimentally impose an additional
known delay δtg � 300 fs on all cores but the reference core
i � 0. Subsequently we redo the group delay measurement; the
results are presented in Fig. 8 as Δ�Δt�i�g �, meaning the current
measurement with Fig. 7(a) is subtracted.

This now gives us two gauges of the measurement uncer-
tainty: (1) the confidence interval from the fit (the error bars)
and (2) the comparison with the known value of the imposed
δtg . This test allows us to distinguish good Δt�i�g measurements
from bad ones. We fix as a criterion that Δ�Δt�i�g � must be
within�50 fs of δtg . Here, 126 out of 168 fulfill this criterion.
The outstanding 42 are classified as bad values. Out of these, 10
are due to inactive or locked segments on the DM, while the
remainder are caused by the core birefringence, which leads to
an output polarization state almost orthogonal to that of the
reference core. In addition Fig. 8 allows us to estimate the pre-
cision of the method. Judging from the error bars, the precision
is on the order of tens of femtoseconds in the best of cases.

B. Compensation of Group Delay

We experimentally confirmed that our compensation scheme
was able to impose any delay on an arbitrary beamlet. A com-
pensation plate with optical path length as shown in the inset in
Fig. 9 was inserted in the plane Σ1 so that each beamlet could
experience one of three delays δtg . To demonstrate this we let
one third of the beamlets traverse each optical path (beamlet i
traverses [i mod 3]δtg ) and measured the resulting Δt�i�g with
phase-shifting spectral interferometry. The result is shown in
Fig. 9. Indeed we recover three groups of values lying along
the three equidistant dotted lines that denote the expected
values.

Next, we experimentally demonstrate optimal compensa-
tion of all Δt�i�g simultaneously. To do so, we must choose
the appropriate δtg , which is different from the one used in
the test measurements above. We note from Fig. 6 that

coverslips of thickness 90 μm are predicted to give the optimal
compensation given a distribution slightly broader than the
experimental one. As a compromise forced by the availability
of coverslip thicknesses we choose a thickness of 100 μm giving
a compensation plate with δtg � 170 fs. Figure 7(c) shows the
histogram of Δt�i�g in the case in which the compensation
scheme is active, as calculated from Fig. 7(b) and Eq. (3)
and δtg � 170 fs. With the compensation scheme we thus ex-
pect to reduce the width of the distribution from 123 to 65 fs.
We then thresholded the data in Fig. 7 to divide the beamlets
into three groups destined to traverse different optical path
lengths; this case is defined as the “compensated case” whereas
the three cases in which all beamlets traverse the same optical
path length are defined as the “uncompensated cases”. In order
to verify the performance gain using the compensated case we
establish a focus Z � 1000 μm from the distal tip of the MCF
using a variant of the phase calibration algorithm we employed
in [8] for all four cases. Figure 10 presents the resulting images
of the focus acquired by CMOS1. Figures 10(a) and 10(b)
show the compensated case, and it can be appreciated that the
focus intensity is 21%–37% higher than in Figs. 10(c)–10(h),
the uncompensated cases. In terms of energy in the focal spot,
it, too, is higher by 22%–35%. The setup was left untouched
during the four measurements, which were commanded from a
PC, which reinforces the conclusion that the increased intensity
in the compensated case is really due to better temporal overlap
of the composite beamlets, as expected.

5. DISCUSSION

We are fairly convinced that the concept of inter-core group
delay compensation detailed in this report offers a superior
trade-off between simplicity, flexibility, and efficiency: the sim-
pler solution of inserting compensation plates not in the plane
Σ1 but in Σ2 would likely have given similar end results but at
the cost of highly elaborate compensation plates and a complete
lack of flexibility as each MCF and each geometric configura-
tion would require a specific compensation plate. We are also
fairly convinced that our concept cannot be made to function
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Fig. 8. Measured group delays with beamlets 1–168 experiencing
δtg � 300 fs in the plane Σ2. (Dots) Measured Δ�Δt�i�g �, (gray
dashed) expected delay from glass plate. Beamlets with 1 ≤ i ≤ 168
pass through glass while the beamlet with i � 0 passes through a hole
(no glass). The group delays in Fig. 7(a) have been taken as baseline for
the values presented in this Figure. Only 126 out of 168 values are
shown. Error bars, three standard deviations.
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Fig. 9. Imposition of additional group delay on arbitrary cores.
(Dots) Beamlets 0; 3;…; 18 experience zero additional group delay.
(Crosses) Beamlets 1; 4;…; 16 experience an additional group delay
of 1 · δtg . (Plusses) Beamlets 2; 5;…; 17 experience an additional
group delay of 2 · δtg . Error bars, three standard deviations. Inset,
sketch of the optical path length of the compensation plate used in
the plane Σ1.
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with less than two wavefront shapers (2D-SLM or DM). Any
attempt to fold the setup and use two incidences on the same
wavefront shaper would hit upon the fact that linear phase-
conjugating mirrors do not exist. In order for a folded setup
to work, a beamlet with (xi, yi, kx;i, ky;i) emitted from a seg-
ment must come back to the same plane with (xi, yi, −kx;i,
−ky;i). But with normal mirrors and telescopes, it can only come
back to the same plane as (xi, yi, kx;i, ky;i) or (−xi, −yi, −kx;i,
−ky;i). So folding is only really possible in one-beam settings in
which �x; y� � −�x; y� � �0; 0�. Please also note that in our
concept there is no space–time coupling because the additional
group delays are introduced in real space, not in momentum
space, unlike in, for example, 4 − f pulse shapers [14].

We have identified a few limiting factors at the present state,
the first of which is the 7% reflection loss at each pass through a
coverslip. In the measurements above we had a maximum of
two passes, which was not too much of a concern. In the case in
which finer compensation ofΔt�i�g is desired, more plates would
be needed and antireflection coatings become necessary in or-
der to avoid excessive reflection losses. Applying the laser abla-
tion detailed above also on coverslips with antireflection coating
poses no fundamental problem. As an alternative, it might be
possible to fabricate a one-block compensation plate by more
advanced machining or etching techniques to decrease the
number of reflective interfaces. Furthermore, in conjunction
with reflective DMs and 2D-SLMs with very high light utiliza-
tion efficiency (up to 95%), this system would be compatible
with the output powers of conventional laser sources already in
use for multi-photon microscopes. Another limiting factor is
the congestion of spots in the plane Σ1. As can be gleaned from
the inset in Fig. 2, the maximum number of different group
delays that can be imposed on beamlets is given by the
maximum number of nonoverlapping spots that can be gener-
ated in the plane Σ1. In the present setup, this limit is set by the
DM segment size and the maximum range of DM segment tip

and tilt. In practice we found that in the present conditions
four nonoverlapping spots were achievable. This allowed us
to impose three different δtg on sets of beamlets, while the
fourth setting Δk⃗ � �0; 0� was used as a beam block. Also,
larger DM segment size and a larger DM segment tip/tilt range
would immediately lead to more degrees of freedom. For in-
stance, existing DM technology already allows for a four times
larger angular deflection leading immediately to an increase of
4 × 4 degrees of freedom for compensation. In the case of
longer fiber lengths, the limiting factor would again relate to
the range of compensation available. It is important to note
that the inter-core GDD need not follow a simple linear accu-
mulation of delay with length as extrinsic factors could partially
compensate for this. Moreover for longer fibers, existing
schemes for the compensation (for example, [15]) of chromatic
dispersion can be directly applied to the laser beam before its
division into beamlets as the core-to-core variation of the re-
fractive indices (Δn) is expected to be less than 10−4.
Furthermore, it must be observed that we have not accounted
for extrinsic factors, notably bending of the fiber on the inter-
core GDD. We expect this to arise from the stress-induced
changes in the refractive index and to play a significant role.
In the application of lensless endoscopes beyond a few special
cases, an active compensation for bending is essential. This re-
mains one of the key challenges toward the operation of robust
lensless endoscopes in a clinical setting and represents the next
logical step in the progression of our work. We would like to
point out that our concept of compensation would allow for a
fast compensation of the delay introduced by bending, pro-
vided it can be measured in real time [16,17].

We must attach a few comments to our choice of using spec-
tral interferometry rather than other methods in order to map
out the Δt�i�g of the MCF. Spectral interferometry necessitates
no moving parts in the setup, contrary to time-domain meth-
ods, and from only a few spectra, it determines the relative delay
of pulses up to a value limited only by the inverse of the spec-
trometer channel spacing. In addition, spectral interferometry
with a fiber-coupled spectrum analyzer is potentially well-suited
for in situ measurement of inter-core GDD of a lensless endo-
scope based on MCF (since this will change with the geometric
configuration of the MCF).

We emphasize that the MCF subject to the present study
was the same double-clad MCF as the one we used in our
demonstration of two-photon endoscopic imaging [9]. The dou-
ble cladding enables the backcollection of fluorescent signal, but
it also leads to some parasitic background in the Δt�i�g measure-
ment because the inner clad guides any light impinging on the
MCF proximal endface to the distal endface. However, as the
above results show, this is a surmountable difficulty.

In the near future, advances in the design and fabrication of
MCF, for example, MCF with a large number of cores with
aligned birefringence [18], are expected to bring about signifi-
cant performance gains in lensless endoscopy including the
group delay compensation scheme described in this paper.

6. CONCLUSION

While gains in performance were modest in this report, we
believe that we have presented a concept to measure and
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Fig. 10. Compensation of inter-core GDD. (Bottom row) Images
of distal focus and (upper row) horizontal cuts. (a),(b) With group
delay compensation, each beamlet passes through one of three points
in the plane Σ1. (c)–(h) Without group delay compensation, all beam-
lets pass through (c),(d) point 0, (e),(f) point 1, and (g),(h) point 2 in
the plane Σ1. With compensation the focus intensity increases by
21%–37% and the focus energy by 22%–35%. The expected gain
can be calculated from Eq. (2) and the Δt�i�g data in Fig. 7. Doing
so we find an expected gain of 47%, not far from the measured
one. The discrepancy might arise from imperfect spatial overlap of
beamlets or differences in core birefringence, both leading to variation
in intensity from beamlet to beamlet.
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compensate for residual inter-core GDD and that it will even-
tually enable a two-photon lensless endoscope based on MCF
in practical settings, as long as the endoscope probe can remain
static. In particular a DM with larger tip/tilt range would
immediately lead to a decrease of congestion in the plane
Σ1, and the compensation plates made up of larger numbers
of coverslips can be easily machined, resulting in finer compen-
sation of Δt�i�g . While endoscopic imaging was not the aim of
this report, all the concepts presented here are compatible with
two-photon lensless endoscopic imaging.

APPENDIX A: PHASE-SHIFTING SPECTRAL
INTERFEROMETRY

1. Collinear Case

We use phase-shifting spectral interferometry to measure the
inter-core GDD, meaning the relative group delays Δt�i�g rela-
tive to core 0 of all N beamlets at the distal end of the MCF.

The measurement is performed two cores at a time, one of
which with i � 0 serves as reference

E �0��t� � E�t�; (A1)

while the field of beamlet i with group delay Δt�i�g and phase
ϕ�i� is assumed to be of the form

E �i��t� � E�t − Δt�i�g �eiϕ�i� ; (A2)

which in the spectral domain is

Ẽ �i��ω� � Ẽ�ω�eiΔt�i�g ωeiϕ
�i� : (A3)

If two beamlets overlap collinearly, then the resulting spectrum
is

jẼ �i��ω� � Ẽ �0��ω�j2 � 2jẼj2�1� cos�Δt�i�g ω� ϕ�i���
� 2jẼj2�1� cos�Ψ�i��ω���: (A4)

This expression remains valid in the case in which both beam-
lets are not transform-limited as long as the chirp is common to
both. Since all beamlets all go through the same optical ele-
ments or near-identical cores, we expect this to be the case.
From this we see that the relative group delay comes about
as the derivative with respect to ω of the spectral phaseΨ�i��ω�.

We now describe our experimental approach to measure
Ψ�i� in a robust way. We consider fixed ω (experimentally,
one spectral channel of the OSA onto which the two beamlets
are incident). We introduce an additional phase ϕj on beamlet
i. Experimentally, ϕj is set by the piston of DM segment i. And
during the measurement all beamlets but beamlets i and 0 are
blocked by a spatial filter in Σ1; the DM imposes a large pos-
itive transverse k vector on beamlets i and 0 and a large negative
transverse k vector on all the rest, which assures good extinction
in Σ1. We acquire spectra S�i� for four equidistant ϕj � j 3π2 ,
0 ≤ j ≤ 3. The spectra S�i��ϕj� thus measured are

S�i��ϕj� � 2jẼj2�1� cos�Ψ�i��ω� � ϕj��: (A5)

From this stack of spectra we can extract the spectral phase
Ψ�i��ω� as [19]

Ψ�i��ω� � − arctan

P
3
j�0 S

�i��ϕj� sin�ϕj�P
3
j�0 S

�i��ϕj� cos�ϕj�
: (A6)

This method is robust toward effects such as material dispersion,
spectral speckle, and polarization mode dispersion in the multi-
mode probe of the OSA (as long as the probe remains static for
the measurement duration). This is repeated for all the channels
of the OSA over three pulse spectral bandwidths FWHM,
centered on the spectral maximum. Subsequently, the group
delay that we were searching for can be found as

Δt�i�g � dΨ�i��ω�
dω

: (A7)

However in practice, we extract Δt�i�g from a linear fit
to Ψ�i��ω�.
2. Noncollinear Case

Experimentally, the interfering beamlets are not collinear on
the probe of the OSA. The measurement is performed in
the plane CMOS2 in Fig. 2. In this case we can assume the
field of the reference beamlet E �0� to be as before, and the field
of beamlet i to be of the form

E �i��t� � E�t − Δt�i�g �eik�i�x eiϕ�i� ; (A8)

where k�i�x is the transverse k vector. In the spectral domain this
gives

Ẽ �i��ω� � Ẽ�ω�eiΔt�i�g ωeik
�i�
x �ikzeiϕ

�i� : (A9)

And the spectrum arising from the interference between the
two beamlets 0 and i isZ

D∕2

−D∕2
dxjẼ �i��ω� � Ẽ �0��ω�j2

� 2jẼj2
Z

D∕2

−D∕2
dx�1� cos�Ψ�i��ω� � k�i�x x��; (A10)

whereD is the diameter of the probe of the OSA. We see that in
the case k�i�x D ≪ 2π we recover the collinear case, up to a phase
offset that disappears upon taking the derivative Eq. (A7).

However, if k�i�x D ≫ 2π the spectral fringes will average out
and the measurement of Δt�i�g will fail. With the parameters

in our setup, k�i�x D < 2.7, which remains within the acceptable
range. It is possible as well to perform the measurement by
placing the OSA probe not in a Fourier plane of the MCF end-
face but at a distance Z from the endface. In that case with the
current MCF parameters the criterion becomes Z > 5 mm.
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