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Reading motor intention through
mental imagery

Daniel Lewkowicz1,2, Yvonne Delevoye-Turrell1,2, David Bailly3,4,
Pierre Andry3,4 and Philippe Gaussier3,4

Abstract
Motor imagery is defined as a dynamic state during which the representation of a given motor act is internally rehearsed
without overt motor output. Some evidence in experimental psychology has suggested that imagery ability is crucial for
the correct understanding of social intention. The present study was conducted first to confirm that the nature of the
motor intention leads to early modulations of movement kinematics. Secondly, we tested whether humans use imagery
to read an agent’s intention when observing the very first element of a complex action sequence. Results revealed early
variations in movement kinematics between three different social actions and further showed that human agents can use
these early deviants to anticipate above chance level the end-result before seeing the second half of the sequence.
Response times in the observation task were similar in duration to those measured in the true production task, suggest-
ing the use of motor imagery for trial categorization. Nevertheless, in a third study, the use of an artificial (neural net-
work) classifier demonstrated that classification within the first 500 ms is possible without cognitive imagery processing.
Hence, our results suggest that low-level motor indices afford intention reading without need for motor imagery but
that human agents may use imaging beyond simulation to create an embodied sense of interactivity.
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1 Introduction

Motor imagery is a cognitive process in which a subject
imagines that he/she is producing a movement without
actually performing it and without even tensing the
muscles. It is a dynamic state during which the repre-
sentation of a specific motor action is internally acti-
vated without any motor output (Jeannerod, 1994;
Lotze & Cohen, 2006). A fast-growing number of stud-
ies are indicating that brain areas engaged in the actual
performance of movements are also active during
motor imagery (Dechent, Merboldt, & Frahm, 2004;
Gerardin et al., 2000; Grezes & Decety, 2000; Hallett,
Fieldman, Cohen, Sadato, & Pascual-Leone, 1994;
Hanakawa et al., 2003; Jeannerod, 2001; Kimberley
et al., 2006; Lotze et al., 1999; Sirigu, Cohen, Duhamel,
& Pillon, 1995; Stephan et al., 1995). Besides the over-
lap in neural activation between imagery and execution,
there are also similarities in the behavioral domain. For
instance, the time to complete an imagined movement
is similar to that needed for actual execution of that
movement. This phenomenon known as mental iso-
chrony has been reported in various tasks, e.g., hand-
writing (Decety, 1993; Decety & Michel, 1989), object

manipulation (Frak, Paulignan, & Jeannerod, 2001),
tapping on targets of different dimensions (Sirigu et al.,
1995) and even whole body actions like walking
through doorways of different widths (Decety &
Jeannerod, 1995).

These findings have led to a theoretical position
termed the simulation hypothesis (Jeannerod, 2001)
that states that movement execution and motor ima-
gery are driven by the same basic cognitive mechanism,
with motor imagery being conceived as an ‘‘offline’’
operation of the motor areas in the brain. Through
mental simulation, motor imagery would not only pro-
duce internal images of our body in action from a first-
person perspective but it would also contain elements
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Nord de France, Rue du Barreau, 59653 Villeneuve d’Ascq, France.

Email: yvonne.delevoye@univ-lille3.fr

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1059712313501347&domain=pdf&date_stamp=2013-08-27


of kinesthetic sensations, which act as a substitute for
the sensory feedback that would arise if the movement
were executed (Naito et al., 2002). Hence, motor ima-
gery is a cognitive activity that requires and uses mental
simulation with in addition an embodied aspect, which
is created through the voluntary activation of those
sensory-motor areas in the brain that would be acti-
vated if we were the true actor of a movement (Mulder,
2007).

What would then happen to our own movements
when watching someone doing another movement?
Brass et al. (2000) conducted a study in which subjects
were instructed to perform a finger movement as rap-
idly as possible. Results indicated that the initiation
times of the movements were faster when the to-be-
performed action was identical to the movement that
was observed, suggesting a priming effect of similarity
between executed and observed actions (Brass,
Bekkering, Wohlschläger, & Prinz, 2000). More recent
studies have confirmed this effect for hand posture
(Urgesi, Candidi, Fabbro, Romani, & Aglioti, 2006)
and for sequence learning (Pascual-Leone, 2001;
Zijdewind, Toering, Bessem, van der Laan, & Diercks,
2003). More importantly for the purpose of the present
study, observing an action primes the very muscles
needed to perform the same action (Craighero, Bello,
Fadiga, & Rizzolatti, 2002; Fadiga, Craighero,
Buccino, & Rizzolatti, 2002; Fadiga, Fogassi, Pavesi, &
Rizzolatti, 1995). Hence, observed actions activate in
the observer’s brain the same mechanisms that would
be activated, were that action intended or imagined by
the observer (Gallese & Goldman, 1998).

The question asked in the present contribution is the
nature of the information that is used during action
observation to permit intention reading. Indeed,
chronometric studies have shown that viewers decide
whether the presented stimulus is a left or a right hand,
by engaging implicit motor imagery, a simulation that
reflects in fact the time constraints of limb rotation
(Parsons, 1994, 2001). It has also been shown that
humans use implicit imagery when asked to decide how
they would grasp a handle appearing in a variety of
orientations with the subjects’ choices being in strict
agreement with the grips chosen during actual grasping
(Johnson, 2000). However, in these studies the exact
nature of the information used to simulate, to imagine
and then, to select a response is not defined or dis-
cussed. In the present study, we will consider the possi-
bility that body kinematics are characterized by early
deviants that reflect the social intention of the agent.
We will further demonstrate that these early deviants
can be used as non-contextualized cues to anticipate
the end-point motor intention of an observed actor.

Optimal control models of biological movement
have been more successful than any other class of mod-
els to predict empirical findings as diverse as movement
corrections from unexpected changes or responses to

global perturbations (Shadmehr & Mussa-Ivaldi, 1994),
but also modeling the structure of motor variability
(Gordon, Ghilardi, & Ghez, 1994; Messier & Kalaska,
1999; van Beers, Haggard, & Wolpert, 2004) and of
generic motor laws (Lacquaniti, Terzuolo, & Viviani,
1983). Optimal control theory helps to understand why
humans move in a specific way by showing that the
movements are optimal with respect to an ecologically
valid criterion. But many experimental cases have
shown that this optimal control is not a rule and that in
many cases, naturalistic movements do not respect the
optimal control laws. Some have named these excep-
tions task-irrelevant factors (Herbort & Butz, 2011). A
much-studied example is that of the end-state comfort
effect (e.g., Rosenbaum, Chapman, Weigelt, Weiss, &
Van der Wel, 2012). In this situation, the initial discom-
fort of the arm posture is tolerated for the sake of final
comfort, because the end-state comfort is critical for
good execution of future task demands (Rosenbaum &
Jorgensen, 1992; Rosenbaum et al., 1990; Short &
Cauraugh, 1997).

In the case of complex sequential actions (as reach-
ing to use an object), it seems legitimate to ask whether
the constraints of subsequent elements would have an
effect on those previous elements that are embedded in
the same sequence. Thus, in an optimal point of view,
the optimization criteria would not be based on per-
forming correctly each sub-element of the sequence but
rather, it would be to follow a global optimal criteria
that will thus constrain the entire motor sequence and
its performance. In a pick and place task, Lewkowicz
& Delevoye-Turrell (under revision) manipulated the
constraints set upon the final target of a two-sequence
action. They reported that both first and second sub-
elements of the sequence were affected by specific end-
position constraints (distance, accuracy, stability).
Moreover, they found that coupled planning (i.e.,
embedding the two movements together) occurred only
if subjects were able to anticipate the consequences of
both sub-elements prior to the initiation of the entire
motor sequence. Thus, it was suggested that despite the
fact that the reach-to-grasp sub-element possesses its
own specific constraints (object size, relative distance
and timing), the criteria set for the second sub-element
(required speed, accuracy and efficiency) would consti-
tute a global and dominant speed–accuracy trade-off
property that would back-propagate to modulate very
early on the planning and/or the execution of the very
first sub-element of the sequence.

Motor intention may also be a parameter that modi-
fies early sequence kinematics. For example, Ansuini
and colleagues (2008) measured the prior-to-contact
grasping kinematics for reach-to-grasp movements per-
formed toward a bottle filled with water. By comparing
hand shaping across tasks involving different subse-
quent actions—pour the water into a container; throw
the bottle; move the bottle from one spatial location to
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another—the authors demonstrated how the prior
intention in grasping the object strongly affected the
positioning of the fingers during the reaching and the
contact phase of the action (Ansuini, Giosa, Turella,
Altoè, & Castiello, 2008; Ansuini, Santello, Massaccesi,
& Castiello, 2006). In another series of studies, Becchio
et al. investigated the effects of social context on reach-
to-grasp actions. They found initial adjustments reflect-
ing specific planning strategies (Becchio, Sartori,
Bulgheroni, & Castiello, 2008a) as well as online adjust-
ments (Sartori, Becchio, Bulgheroni, & Castiello, 2009)
when performing under social context (Becchio,
Sartori, & Castiello, 2010).

Hence, there is growing evidence that both end-point
constraints and social contexts affect movement kine-

matics early on. Recently, it was suggested that these

deviants are meaningful and may be used to read motor

intention. For example, when observing actions per-

formed under social context (or not), Castiello and col-

laborators demonstrated that humans can successfully

use kinematic cues of reach-to-grasp movements to pre-

dict the final goal of the action (Sartori, Becchio, &

Castiello, 2011). However, other contextual cues may

have been used, e.g., the face, body movements and

gaze orientation to infer the goal of the action and its

social underlying intention. To study this aspect, Stapel

and collaborators (2012) investigated specifically the

contribution of contextual cues and found that both

sources were important: intention reading was more

accurate if the observed actions were placed within a

meaningful context (Stapel, Hunnius, & Bekkering,

2012). Nevertheless, humans can exploit subtle move-

ment cues alone as suggested by an elegant study using

point-light displays of simple reach to grasp movements

(Manera, Becchio, Cavallo, Sartori, & Castiello, 2011).

However, in this later study, choices were to be made

between voluntary actions that were performed under

different speeded conditions (cooperation vs. competi-

tion; fast vs. slow), which may have induced artificial

and significant kinematic differences.
In the present study, we wanted to examine the

capacity of humans to read motor intention: (1) during
voluntary motor sequences performed under constant
speeded constraints, and to discuss (2) the need of
motor imagery in the process. Complexity was manipu-
lated both on the fact that the motor sequence was con-
stituted of two elements (elt1: reach to grasp; elt2: lift
to place) and was performed during a true social-
interactive game with a conspecific. As such, we
recorded sequential actions during an ecologically
inspired task (Jungle Speed) in a face-to-face game
using a unique manipulated object. One important cri-
terion in the design construction was to select a first
common action (i.e., the reach movement) that led to
different subsequent situations, which had direct
impact on the game’s progression.

Confronting Jacob and Jeannerod’s (2005) reading
motor intention hypothesis, we hypothesized that
human agents are able to read motor intention through
the simple observation of arm kinematics of the first
element of a two-sequence action. This is possible due
to the fact that arm kinematics of the reach to grasp
movements reveal specific deviants in function of goal
intention from an ideal optimized trajectory. Finally, if
motor imagery is not necessary for intention reading,
and if low level motor simulation is sufficient, then an
artificial neural network (ANN) should be able to learn
from the deviants and predict as well as humans, the
motor intention of an observed agent. In the following
section, we first describe the methods used to make the
observation videos (Part A), which were then played to
human agents (Part B) and used as input parameters to
an ANN (Part C).

2 Method

2.1 Part A: creating the stimuli

Two adults participated in the study, one as the experi-
menter and the other as the subject. Both participants
were right handed as verified with the Edinburgh
Handedness Inventory (Oldfield, 1971). They had no
prior knowledge of the experiment and provided
informed consent before participating in the experimen-
tal session that lasted approximately 90 min. The sub-
jects’ movements only were recorded using (1) a video
camera (Sony Handycam) and (2) 4 Oqus infrared cam-
eras (Qualisys system). To provide the means to analyze
arm kinematics, infrared reflective markers were placed
on the index (base and tip), the thumb (tip), the wrist
(scaphoid and pisiform) of the subject, as well as on the
object. Care was taken as to provide no contextual
information within the video clips (torso, gaze, face
expression), i.e., only the hand and the target object
were fully in view. Cameras were calibrated before each
session, allowing the system to reach a standard devia-
tion smaller than 0.2 mm, with a 200-Hz sampling rate.
Three different positions were indicated on the tabletop
by black tape and symbolized three specific locations
that will be referred to in the next section as the placing
positions: ‘‘Play’’, ‘‘Me’’, ‘‘You’’ (Figure 1a).

2.1.1 The game. Both the subject and the experimenter
were seated at a table, facing each other. The starting
position for both participants was a point placed at
midline 80 cm in front of the body. The object that was
to be manipulated was a wooden dowel (width 2 cm;
height 4 cm) that was placed precisely 20 cm in front of
the starting position of the subject. The subject’s task
was to reach and grasp the dowel between thumb and
index finger in order to move it from the initial position
to one of three placing positions, during an adapted
version of the Jungle Speed game (Asmodee editions.).
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A trial was defined as a series of three moves: initiate,
compete, reward. The initiate-move required subjects
to pick and place the dowel on the ‘‘Play’’ position.
Then, at a ‘‘go’’ signal (given by the computer), both
participants were required to perform the compete-
move, i.e., to reach for the dowel as quickly as possible.
For each win, 1 point was scored. The reward-move
was performed by the subject who picked up the dowel
to place it on the ‘‘Me’’ position (if he/she had won the
point) or on the ‘‘You’’ position (if the point was attrib-
uted to the experimenter). Each trial started with the
dowel placed by the experimenter at the initial position
and with the participants pinching index and thumb
together, with the fingertips set upon the starting posi-
tion (Figure 1a). Time pressure was set only on the

compete-move, which was not recorded. A block ended
when one of the two players reached a total of 20
points. The game consisted of four blocks of approxi-
mately 40 trials.

2.1.2 The recordings. The best 16 video recordings of
each category (‘‘Play’’, ‘‘Me’’ and ‘‘You’’) were selected
based on their mean bit rate quality (.4500 kbps) and
kept for future use as stimuli. Each sequence included a
1-s time interval before the initial movement onset, and
was cut exactly one frame before the index finger con-
tacted the object. Movies were compressed with
FFdshow codec (MJPEG) at 50 frames/s with a screen
resolution of 7203576 pixels (Figure 1b). Video clips
were synchronized to the recordings of arm kinematics.

Figure 1. (a) Experimental set-up showing the ‘‘Play’’, ‘‘Me’’ and ‘‘You’’ final position and their respective distances from the initial
object position. The white squared areas are the starting hand position for both the subject (bottom) and the experimenter (top).
(b) Example of stimuli. This close view was used for the movie clips to avoid any contextual effect (no body, no head). (c) Typical
velocity profiles observed in the ‘‘Play’’, ‘‘Me’’ and ‘‘You’’ conditions are presented with full, dashed and dotted lines, respectively.
Note that total movement time, the magnitude and the time to peak velocity of the first element of the sequence are significantly
affected by motor intention (i.e., the experimental conditions).
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2.1.3 Analyzing arm kinematics. Positional data points
were filtered using a dual fourth-order Butterworth
low-pass filter (fc=15 Hz; forward and backward) and
tangential 3D instantaneous velocities were calculated.
A threshold of 20 mm/s was used to determine the
onset of movement. All velocity trajectories were bell
shaped and consisted of two ‘‘bells’’: (1) the first bell
corresponds to the reach to grasp element, which will
be referred to in the following as the first element of
the sequence; (2) the second bell corresponds to the lift
to place element, which will be referred to in the follow-
ing as the second element of the sequence (Figure 1c).
The amplitude of peak velocity of the first element
(APV1) was extracted using the local maxima (first
zero-crossing of acceleration). The end of the first ele-
ment was determined as the time of occurrence of the
local minima (second zero-crossing of acceleration)
between the first and the second element-peaks. The
duration of the first element (MT1) was calculated as
the time interval between the onset and the end of the
first element. Each parameter was submitted to a
repeated-measure analysis of variance (ANOVA) with
Block and Category as within factors; an alpha level of
significance was set to .05.

Results revealed an absence of Block effect on
APV1, F(2,30)=3.056, p=.062, h2

p=.17 and MT1,
F(2, 30)=2.727, p=.082, h2

p=.15, suggesting similar
movement properties across block repetitions, both for
amplitude of peak velocity (Block 1: M=838, SD=31
mm/s; Block 2: M=824, SD=26 mm/s; Block 3:
M=847, SD=36 mm/s) and for movement duration
(Block 1: M=440, SD=35 ms; Block 2: M=459,
SD=28 ms; Block 3: M=462, SD=24 ms). More
importantly, results showed a global effect of Category
both on APV1, F(2,30)=58.463, p\.001, h2

p=.80, and
on MT1, F(2,30)=55.821, p\.001, h2

p=.79 indicating
that when subjects reached for the dowel, peak veloci-
ties were lower for the ‘‘Play’’ (M=796, SD=27 mm/s)
than for the ‘‘Me’’ category. Furthermore, movement
durations were longer for the ‘‘Play’’ (M=481, SD=34
ms) than for the ‘‘You’’ category. The reach to grasp
movement in the ‘‘Me’’ category showed both higher
peak velocities (M=893, SD=37 mm/s) and longer
movement durations (M=479, SD=22 ms) than that
observed in the ‘‘You’’ category (APV1: M=820,
SD=28 mm/s, MT1: M=402, SD=19 ms). As seen in
Figure 2, these results lead to an overlap of 30% across
conditions only. Hence, through the use of these two
parameters alone, a classification system should be able
to categorize in a predictive matter these three motor
sequences, which possess distinct motor intentions.

2.2 Part B: human prediction of ongoing actions

In the present study, the short video clips were pre-
sented to a panel of human subjects to test whether
human agents are able to predict the goal of a

sequential action when shown only the first element of
a sequence, i.e., the reach to grasp element. To test the
hypothesis that a simple artificial classifier could also
learn to discriminate between social categories (because
the biological kinematics are affected by the agent’s
intention), the 3D instantaneous velocities of the arm
kinematics corresponding to each short video clip were
fed as input parameters to a classical feedforward
neural network (NN) with one hidden layer. These
experiments are presented in the following sections,
Part B and Part C, respectively.

2.2.1 Participants. Twenty-six young adults (mean age:
21.8262.76 years, range=18–29 years) participated in
the study. All subjects were right handed (Oldfield,
1971) and had no prior knowledge of the experimental
goals. Subjects provided informed consent before parti-
cipating in the experimental session that lasted approxi-
mately 45 min.

2.2.2 Apparatus and software. Participants were seated
comfortably facing a table in a dark and silent room.
For each trial, participants started by placing their
hand on response keys that were delimited by tape
placed directly on the number-pad (numbers 2, 5 and 8
were used). Stimuli were presented on a laptop

Figure 2. The spatial representations of the first element of
the sequence where the 144 stimuli that were recorded using
the Qualysis 3D motion capture system. The X-axis codes
movement duration. The Y-axis codes maximum amplitudes of
peak velocity of the first element of the sequence. In the three
‘‘Play’’, ‘‘Me’’ and ‘‘You’’ categories, the 95% confidence ellipses
are plotted in dark, gray and white colors, respectively. The
overlapping areas were estimated as following: three
categories=6.8%, two categories=24.6%, no overlap=68.6%.
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computer with MATLAB software (Mathworks) in the
PsychToolbox environment. Analogical scales (10-cm
lines) were used for self-evaluation of performance
levels.

2.2.3 Experimental procedure. The participants’ task was
to answer after each video clip presentation whether the
social intention of the sequence was ‘‘let’s Play’’ (key5),
‘‘for Me’’ (key2) or ‘‘for You’’ (key8). A 1-s blank
screen was displayed in between two trials. Participants
were instructed to give their answers as fast and as
accurately as possible. They were obliged to provide an
answer within a 4-s time window; otherwise, the trial
was cancelled and presented at the end of the block. A
feedback message was given when responses were too
slow. Each block consisted of the random presentation
of a series of 48 stimuli, i.e., 16 different video clips for
each of the three categories (Play; Me; You). At the
end of the block, a 5-min pause was systematically
taken. At this occasion, participants filled in an analo-
gical scale to provide a subjective judgment of the per-
formance they thought to have achieved on a scale
from 0 (very poorly) to 10 (very well).

2.2.4 Dependent variables and statistical analyses. For each
trial and participant, response times were calculated as
the time interval between the presentation of the last
frame of the video and the subjects’ key press. Mean
percentages of correct responses, mean response times
and mean self-evaluation scores were calculated for
each category and submitted to a repeated-measure
ANOVA with Block and Category (Play; Me; You) as
within factors. We also conducted sub-analyses. (1) For
the percentages of correct responses, scores for each
category were compared with the reference constant,
i.e., the random answer value of 0.33, with a single sam-
ple t-test. (2) To gain an indicator of motor imagery,
response times were compared with the true movement
duration presented on the video (MT1+MT2) for each
category. In all of these analyses, the alpha level of sig-
nificance was set to .05.

2.2.5 Response times. Statistical analyses revealed an
absence of Block effect, F(2,50)=1.401, p=.256, indi-
cating that participants answered as fast in Block 1
(M=878, SD=382 ms), in Block 2 (M=848, SD=315
ms), and in Block 3 (M=944, SD=316 ms). An
absence of main effect was also found for Category,
F(2,50)=2.621, p=.083, indicating that participants
answered as fast for ‘‘Play’’ (M=900, SD=294 ms),
‘‘Me’’ (M=866, SD=294 ms), and ‘‘You’’ categories
(M=905, SD=300 ms). The sub-analysis revealed an
absence of difference between response times and
movement times for ‘‘Play’’ (M=900 vs 898 ms),
t(25)=0.25, p=.980, ‘‘Me’’ (M=866 vs 964 ms),

t(25)=1.694, p=.103 and ‘‘You’’ categories (M=905
vs 907 ms), t(25)=0.032 p=.975. These results indicate
that the participants waited a time interval before giv-
ing their response. However, it is here difficult to con-
clude on the use of motor imagery using the classic
approach of comparing trial durations in true and ima-
gined situations, respectively, as there was an absence
of Category effect on movement time.

2.2.6 Percentages of correct responses. There was an
absence of Block effect on classification performances,
F(2,50)=0.102, p=.903. However, a main effect of
Category was obtained, F(2,50)=16.022, p\.001,
h2
p=.39. Post hoc Scheffé analyses further indicated

that participants were more accurate for trials in the
‘‘Me’’ category (M=57.53, SD=13.02%) than in the
‘‘You’’ (M=40.87, SD=12.12%) and in the ‘‘Play’’
category (M=47.27, SD=13.04%). Single sample tests
confirmed that each category was above random
(‘‘Me’’: t(25)=5.463, p\.001; ‘‘Play’’: t(25)=9.914,
p\.001; ‘‘You’’: t(25)=3.169, p=.004). These results
are presented in Figure 3.

2.2.7 Self-evaluation. The main effect of Block did not
reach significance for the self-evaluation scores,
F(2,50)=2.674, p=.079. Across blocks, participants
self-evaluated their own performances as only slightly
better than chance (M=40.90, SD=13.15%). As cor-
rect classification was obtained for all categories, statis-
tical analysis confirmed that participants significantly
under estimated their true performance level,
F(1,25)=11.680, p=.002, h2

p=.32; this was especially
true in Block 3 in which performance level was subjec-
tively reported as being the worst (M=38.17,
SD=19.30% vs. M=48.80, SD=12.46%).

Figure 3. Mean percentage of correct responses (standard
deviations as error bars) obtained in the experiment reported in
Part B. The dotted lines represent the random baseline level of
33.33%. Note: *a=.05; **a=.01.
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2.3 Part C: predicting sequential actions using
artificial neural networks

In the following section, we describe the simple feedfor-
ward NN that was developed in the present study to
discuss the possibility to anticipate the motor intention
of an agent without the need of high order cognitive
imagery processes.

2.3.1 Architecture and learning procedure. A simple classi-
fication NN was constructed with N neurons (1–23
neurons) as inputs, three hidden neurons and three out-
put neurons (one for each category). The N size is the
number of samples taken from the kinematics, which
may be used for the classification task, i.e., the sub-
selection of the total movement duration. Activation
functions for the output layers were symmetrical and
sigmoid, between 21 and 1. It is the case that the out-
put vector can be interpreted as a logical value (+1)
when the associated category is activated; the logical
value (21) is attributed otherwise. In the present case,
a single component was set to +1.

For each trial, only the section for which there was a
hand-movement was considered, i.e., from the start of
the first element to the end of the second element of the
sequence. This time interval was determined in refer-
ence to the 20-mm/s threshold criteria used in part B of
the present study. The instantaneous velocity in 3D
was then calculated between the two subsequent frames
of the wrist’s position. A sampling parameter was used
to compute the average velocity across 10 frames. This
sampling parameter is a constant time window of 50 ms
without overlap that echoes the perceptual binding of
motion events. Thus, the procedure afforded a vector
of N samples that were then used as input parameters
for the network. Finally, a training-set (25%) and a
test-set (75%) were randomly picked from the 144 dif-
ferent kinematic recordings. For each possible size of
the input vector (i.e., time window for kinematic recog-
nition), 20 different networks were trained to obtain a
classification performance. The results for mean
responses and variances across the 20 networks are
described in the result section as the NN success rate
(this value is always lower than the best performing
network).

By varying the amount of data fed as input para-
meters (1–23), we computed the classification perfor-
mance from multiple time windows (50–1150 ms). The
learning procedure that was chosen is a back-
propagation algorithm using the FANN library
(Nissen, 2003). Target error (to stop the learning) was
set to mean standard error (MSE)\0.001, with a maxi-
mum number of epochs set to 10,000, and 300 itera-
tions between each test for the evaluation of target
global error. In a preliminary study, we used networks
with an augmented number of hidden units and good
performances were also obtained. Nevertheless, as an

ANN with three hidden units succeeded in learning the
classification task, we opted in the present report for
the simplest system in order to minimize risks of over
learning.

2.3.2 Classification results in function of time. The artificial
classifier was able to converge in most cases. The classi-
fier succeeded in discriminating between categories for
input sizes above nine, i.e., with at least 450 ms of
movement information. For the input size of nine, sin-
gle sample t-tests confirmed that all categories were
recognized above chance level, p\.001: ‘‘Play’’ category
(M=55.70 SD=8.08%); ‘‘Me’’ category (M=56.70
SD=4.16%), and ‘‘You’’ category (M=50.33
SD=5.63%). Figure 4 presents the detailed results
obtained for 12 different input sizes, between one (50
ms) and 23 (1150 ms). From the input size of five (250
ms) to nine (450 ms), only two categories were success-
fully recognized while the other remained below chance
level. Below the input size of five, only one category
was correctly classified. Depending on initial conditions
and learning procedures, we observed that the cate-
gories that were more rapidly identified could change.
Hence, further work is required for further interpreta-
tion of these category-specific effects. Nevertheless, the
crucial point to note here is the fact that by 450 ms all
categories were classified above chance level, a point in
time that occurred before the end of the first element of
movement sequence (Figure 4). This finding confirms
the capacity of a simple network to categorize motor
intention through the use of low-level kinematics,
before the initiation of the second element of the motor
sequence.

Figure 4. Mean percentage of correct classifications (standard
deviations as error bars) obtained with artificial neural
networks. The horizontal axis codes the input size (step1: 50 ms
to step23: 1150 ms). The vertical axis codes the mean and
standard deviation values of the 20 networks. The dotted lines
illustrate random baseline. The vertical gray bar indicates the
end of the first motor element of the sequence.
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3 Discussion

Recent studies in robotics, cognitive sciences, and
motor control have described high-skilled robotic sys-
tems that are able to solve complex tasks such as navi-
gation, object recognition and even fine object
manipulations. The development and application of
e.g. the optimal theories of motor control (Doya, 2000;
Todorov, 2004; Todorov & Jordan, 2002) have pro-
vided the means to create systems that have even mas-
tered the problem of gravity, allowing for the execution
of complex physical motor sequences such as walking
and dancing. In contrast, robotic systems still reveal
limited adaptive capacities with humans, especially for
rhythmic situations for which the robots lack crucially
of interactivity. The absence of interactivity may be
because the optimal theories of motor control are no
longer sufficient (Sisbot, Marin-Urias, Broquere,
Sidobre, & Alami, 2010) to account for the behavioral
data that have been reported in experimental psychol-
ogy in cases of human social interactions. Indeed, an
increasing number of studies are reporting that for
humans acting alone (motor interaction), the motor
actions performed do not follow kinematics that are
similar to those used when the person acts in collabora-
tion/competition with a partner (social interaction;
Becchio et al., 2010). These behavioral deviants that
are observable in the early stages of motor execution
may play a functional role and be used by conspecifics
as social cues to infer motor intention. Thus, they need
to be considered when creating cybernetic systems that
afford true human-robot interactivity (Andry,
Gaussier, Moga, Banquet, & Nadel, 2001; Gaussier,
Moga, Quoy, & Banquet, 1998).

In the present contribution, we report experimental
data confirming that motor intention modifies move-
ment kinematics within the first hundreds of millise-
conds. More specifically, our findings demonstrated
first that the three different motor intentions that
were created using a simplified version of the Jungle
Speed game modified the kinematics of the first
(reach) element of the motor sequence. Second,
human agents were able to classify rapidly (\1 s) and
above chance level (.40%), the trial category through
the observation only of the reaching movement of the
sequence. Response times were long (. 800 ms),
which may have permitted the use of motor imagery
by our human participants. Nevertheless, using a clas-
sic feedforward NN, results indicated that motor ima-
gery is maybe not necessary since the ANN was able
to categorize trials through the use of low-level kine-
matics within the first 450 ms of the sequence. In the
following section, we discuss these findings in more
detail and open the discussion on the need to use
motor imagery by human agents in order to experi-
ence true interactivity.

3.1 Kinematics reflecting motor intention

In the abundant literature of manipulative actions, the
effects of end-point constraints on the early parts of
movement kinematics have been investigated exten-
sively. In non-social situations, multiple parameters
have been reported to modify and shape hand trajec-
tory in two-element sequences such as second-target
distance (Gentilucci, Negrotti, & Gangitano, 1997),
end-target orientation (Haggard, 1998; Hesse &
Deubel, 2010; Seegelke, Hughes, Schütz, & Schack,
2012), and second-action type (Armbrüster & Spijkers,
2006; Johnson-Frey, McCarty, & Keen, 2004;
Marteniuk, MacKenzie, Jeannerod, Athenes, & Dugas,
1987; Mason, 2007; Weiss, Jeannerod, Paulignan, &
Freund, 2000). In social tasks, final-goals have also
been reported as having an effect on reach-to-grasp
kinematics such as giving vs. placing an object (Becchio
et al., 2008a), cooperative vs. competitive actions
(Becchio, Sartori, Bulgheroni, & Castiello, 2008b;
Georgiou, Becchio, Glover, & Castiello, 2007), absence
vs. presence of social request (Ferri, Campione, Dalla
Volta, Gianelli, & Gentilucci, 2011; Sartori et al.,
2011), and even verbal communicative vs. non-
communicative intentions (Sartori, Becchio, Bara, &
Castiello, 2009). The kinematic effects reported in the
present study are consistent with this literature and sug-
gest that when planning a sequential action with multi-
ple motor elements, the requirements of the endpoint
element are back propagated to constrain the way the
very first element of the sequence will be planned and
performed. Thus, it is possible to suggest that low-level
motor components may contain early indices that
reflect the end-point motor intention of an agent.

3.2 Reading motor intention .

In the present study, each trial started with the similar
movement of reaching to grasp an object, whether the
action was then to give, keep or displace the object to
another position on the table. Indeed, subjects initiated
their move with their hand placed on the starting pad
of the playing area, and reached for and grasped the
wooden-peg that was always located at the same posi-
tion on the table. However, the second part of the
sequence was specific and directly related to motor
intention: lift the wooden peg to take it (‘‘Me’’ cate-
gory), to give it (‘‘You’’ category) or to place it on the
table (‘‘Play’’ category). Thus, any kinematic deviants
observed on the first part of the sequence may be
related to the social intention of the second part. By
measuring two basic motor parameters (peak velocity
and movement duration), we showed that it was possible
to dissociate the three types of social interaction cate-
gories (Figure 2). We then tested the fact that human
observers could use these deviants to classify observed
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actions above chance level. The video clips were created
in order to show the first element only, without any
contextual cues; care was also taken to cut the end of
the reaching action, one frame before object contact, in
order to avoid providing any cues on movement direc-
tion of the second element of the sequence. Even if par-
ticipants found the task very difficult and thought to
have responded randomly, our findings demonstrated
that classification is possible and that in certain cases,
the participants’ performance can be extremely precise
(up to 67% of correct classification for the best of par-
ticipants). But how is this possible?

3.3 . through mental imagery

According to the simulation hypothesis (Jeannerod,
2001), both observing and imagining an action activates
the same neural correlates than actual execution. This
possibility has since been confirmed in behavioral
experiments that have shown that the time to complete
an imagined movement is similar to that needed for
actual execution of that same movement. When human
subjects were required to classify observed actions,
response times were found to be significantly longer
than classic simple reaction times (.500 ms). They were
in fact as long as the durations of the actual second
motor element, with an absence of time differences.
These findings suggest that subjects were performing
motor imagery of the second motor element in order to
simulate the motor intention of the observed agent,
motor image on which they based their decision. It has
been proposed that cognitive high-level functions like
motor simulation would also be the basis for the emer-
gence of intention understanding in more complex
situations like role playing, theory of mind or empathy
(Gallese, 2001; Gallese, Keysers, & Rizzolatti, 2004;
Iacoboni, 2009). It would be interesting in a future
study to include personality and individual characteris-
tics to assess how emotional valence and social similar-
ity may modulate the capacity to read intention
through action observation.

3.4 An alternative low-level hypothesis

It is nevertheless possible that the understanding of
motor intention is based on more low-level cue read-
ings. Indeed, despite a total absence of contextual cues
within the video clips (body, head, eyes), we demon-
strated in the present study that participants were able
to read motor intention significantly above chance
level. Hence, it might be that the subjects’ responses are
guided only by the slight kinematics deviances from the
optimal trajectory. This would trigger a stimulus–
response type of mechanism that would take place after
years of interactive experiences; none cognitive by
nature, it would require little resources but could lead
to high recognition errors, especially in poorly known

environments. As a first investigation of this alternative
low-level hypothesis, we reported here a second method
of investigation (presented in part C) for which we used
a very simple NN classifier and we showed that this
NN was able to categorize the three categories of social
interaction above chance level. The NN stabilized
within the first 450 ms, which suggested that the classifi-
cation was terminated before the end of the first motor
element of the sequence. The performance level reached
by the NN was similar to that observed in human indi-
viduals suggesting that stimulus–response coding could
be sufficient for intention reading. However, it is to
note that the NN was fed with extracted tangential
velocity samples as input. Thus, the NN on the one
hand and the humans on the other reached similar per-
formance levels using different strategies to solve the
puzzle of motor goal inference. Future studies are now
required to investigate further the nature of the infor-
mation that provides the best classification of motor
goals/intentions. In addition, it will be important to
determine whether human individuals could reach simi-
lar performance levels using direct coding of the low-
level kinematic parameters (see the resonance theory by
Viviani, 2002) or whether the kinematic deviants are
simply a byproduct and hence, even for the simplest
actions, humans need to engage in a cognitive simula-
tion process to understand motor intention (for a
debate see e.g. Kilner, Friston, & Frith, 2007).

It is to note that correct classification of the three
social categories was far from being perfect, reaching in
the best of cases 67% of correct identification. Hence,
kinematics can be used for predicting ongoing actions
but cannot be the only source used by human agents to
judge motor intention. It has been shown that during
natural sequential tasks (i.e., preparing a sandwich), eye
movements are stereotyped and predictive (Hayhoe,
Shrivastava, Mruczek, & Pelz, 2003; Pelz, Hayhoe, &
Loeber, 2001), with the eyes preceding the hand move-
ments in a systematic way (Johansson, Westling,
Bäckström, & Flanagan, 2001). It is thus possible that
using both gaze position and the hand kinematics, an
observer is able to increase the efficiency of intention
reading (Bekkering & Neggers, 2002).

3.5 Perspectives for interactive and social robotics

The application of our work would be to develop
robots that afford true interaction, i.e., being able (1)
to read motor intention in human kinematics in order
to adapt but also (2) to move with biological realistic
kinematics, in order to allow others to understand the
intention of the robot. The Aibo robot designed by
Sony is a good example of the limitations of current
approaches. The robot is quite impressive during the
first minutes of functioning (smooth movements, nice
physical design .) but rapidly people stop trying to
interact with Aibo. Following the data presented here,
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we hypothesize that a humanoid robot could become
interactive if it moved following the laws of biological
movement with action sequences that integrate back-
propagation of terminal intention. Such a phenomenon
would provide the means for human agents to read
intentionality and thus, gain in understanding the goal
of the robot’s movements. Furthermore, including
social deviants in the motor kinematics within early
steps of motor sequences would also allow safe interac-
tion with large industrial robots by affording humans
the possibility of anticipating false moves in joint
actions that share similar work spaces.

Implementing robots with the architecture necessary
to ‘‘afford intentionality’’ would need to integrate the
different brain regions that are known to play a role in
motor planning and motor-sensory predictive mapping.
De Rengervé et collaborators (De Rengervé, Hirel,
Andry, Quoy, & Gaussier, 2011) have recently reported
on such an architecture, which included amongst other
areas, the cerebellum and the basal ganglia. Tested on
both software and hardware, this neural architecture
has demonstrated its efficiency on data collected in a
hydraulic robotic arm. With a series of imitation trials,
this system demonstrated the capacity to learn how to
perform sequential actions that respected biological
laws, i.e., to perform movements with kinematics that
mirror those performed by human agents. As such, this
robot arm suggests increased interactivity with human
agents affording augmented interaction in both time
and space (none published results). Ongoing studies are
now being conducted to assess whether this interactiv-
ity is associated to an increase in the capacity of human
collaborators to read the robot’s intention.

4 Conclusion

We have reported experimental data demonstrating
that it is possible to read motor intention through the
simple observation of kinematic deviants. Classification
capacities were significantly above chance level and
provided human subjects the means to dissociate
between three different socially oriented actions. We
argue in the present study that reading intentionality
may not depend on a high-level cognitive function as
suggested in the psychological literature. Internal simu-
lations may not be systematically required and under-
standing other intentions may, in certain cases, relate to
a direct coding of those kinematic deviants that back
propagate from end-point to early on during sequence
execution. This direct coding would emerge through
years of learning, during interactions with adult conspe-
cifics. As a first step to support this hypothesis, we
report in the present study simple NNs that were able,
after learning the meaning of kinematic deviants, to
classify the three categories of actions to the same
degree of accuracy as the human participants, without the

need of complex cognitive processes. These preliminary
results stress the importance of further development of
the optimal theories of motor control to include the
more cognitive aspects of social context.
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