Fractional extreme distributions
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Fractional extreme distributions
Author(s) :
Boudabsa, Lotfi [Auteur]
Ecole Polytechnique Fédérale de Lausanne [EPFL]
Simon, Thomas [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Vallois, Pierre [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Ecole Polytechnique Fédérale de Lausanne [EPFL]
Simon, Thomas [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Vallois, Pierre [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Journal title :
Electronic Journal of Probability
Pages :
1-20
Publisher :
Institute of Mathematical Statistics (IMS)
Publication date :
2020-09-05
ISSN :
1083-6489
English keyword(s) :
Double Gamma function
extreme distribution
fractional differential equation
Kilbas-Saigo function
Le Roy function
stable subordinator
extreme distribution
fractional differential equation
Kilbas-Saigo function
Le Roy function
stable subordinator
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
We consider three classes of linear differential equations on distribution functions, with a fractional order α ∈ [0,1]. The integer case α = 1 corresponds to the three classical extreme families. In general, we show that ...
Show more >We consider three classes of linear differential equations on distribution functions, with a fractional order α ∈ [0,1]. The integer case α = 1 corresponds to the three classical extreme families. In general, we show that there is a unique distribution function solving these equations, whose underlying random variable is expressed in terms of an exponential random variable and an integral transform of an independent α-stable subordinator. From the analytical viewpoint, this distribution is in one-to-one correspondence with a Kilbas-Saigo function for the Weibull and Fréchet cases, and with a Le Roy function for the Gumbel caseShow less >
Show more >We consider three classes of linear differential equations on distribution functions, with a fractional order α ∈ [0,1]. The integer case α = 1 corresponds to the three classical extreme families. In general, we show that there is a unique distribution function solving these equations, whose underlying random variable is expressed in terms of an exponential random variable and an integral transform of an independent α-stable subordinator. From the analytical viewpoint, this distribution is in one-to-one correspondence with a Kilbas-Saigo function for the Weibull and Fréchet cases, and with a Le Roy function for the Gumbel caseShow less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- 1908.00584
- Open access
- Access the document
- document
- Open access
- Access the document
- 20-EJP520.pdf
- Open access
- Access the document