Advances in sunphotometer-measured aerosol ...
Document type :
Article dans une revue scientifique: Article de synthèse/Review paper
PMID :
Permalink :
Title :
Advances in sunphotometer-measured aerosol optical properties and related topics in China: Impetus and perspectives.
Author(s) :
Che, Huizheng [Auteur]
State Key Laboratory of Severe Weather [LASW]
Shi, Hongrong [Auteur]
Laboratory for Middle Atmosphere and Global Environment Observation [LAGEO]
Chen, Hongbin [Auteur]
Laboratory for Middle Atmosphere and Global Environment Observation [LAGEO]
University of Chinese Academy of Sciences [Beijing] [UCAS]
Nanjing University of Information Science and Technology [NUIST]
Zhang, Xiaoye [Auteur]
State Key Laboratory of Severe Weather [LASW]
Wang, Pucai [Auteur]
Laboratory for Middle Atmosphere and Global Environment Observation [LAGEO]
University of Chinese Academy of Sciences [Beijing] [UCAS]
Goloub, Philippe [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Holben, Brent [Auteur]
NASA Goddard Space Flight Center [GSFC]
State Key Laboratory of Severe Weather [LASW]
Shi, Hongrong [Auteur]
Laboratory for Middle Atmosphere and Global Environment Observation [LAGEO]
Chen, Hongbin [Auteur]
Laboratory for Middle Atmosphere and Global Environment Observation [LAGEO]
University of Chinese Academy of Sciences [Beijing] [UCAS]
Nanjing University of Information Science and Technology [NUIST]
Zhang, Xiaoye [Auteur]
State Key Laboratory of Severe Weather [LASW]
Wang, Pucai [Auteur]
Laboratory for Middle Atmosphere and Global Environment Observation [LAGEO]
University of Chinese Academy of Sciences [Beijing] [UCAS]
Goloub, Philippe [Auteur]

Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Holben, Brent [Auteur]
NASA Goddard Space Flight Center [GSFC]
Journal title :
Atmospheric Research
Volume number :
249
Pages :
105286
Publication date :
2020-10-07
ISSN :
0169-8095
English abstract : [en]
Aerosol is a critical trace component of the atmosphere. Many processes in the Earth's climate system are intimately related to aerosols via their direct and indirect radiative effects. Aerosol effects are not limited to ...
Show more >Aerosol is a critical trace component of the atmosphere. Many processes in the Earth's climate system are intimately related to aerosols via their direct and indirect radiative effects. Aerosol effects are not limited to these climatic aspects, however. They are also closely related to human health, photosynthesis, new energy, etc., which makes aerosol a central focus in many research fields. A fundamental requirement for improving our understanding of the diverse aerosol effects is to accumulate high-quality aerosol data by various measurement techniques. Sunphotometer remote sensing is one of the techniques that has been playing an increasingly important role in characterizing aerosols across the world. Much progress has been made on this aspect in China during the past decade, which is the work reviewed in this paper. Three sunphotometer networks have been established to provide high-quality observations of long-term aerosol optical properties across the country. Using this valuable dataset, our understanding of spatiotemporal variability and long-term trends of aerosol optical properties has been much improved. The radiative effects of aerosols both at the bottom and at the top of the atmosphere are comprehensively assessed. Substantial warming of the atmosphere by aerosol absorption is revealed. The long-range transport of dust from the Taklimakan Desert in Northwest China and anthropogenic aerosols from South Asia to the Tibetan Plateau is characterized based on ground-based and satellite remote sensing as well as model simulations. Effective methods to estimate chemical compositions from sunphotometer aerosol products are developed. Dozens of satellite and model aerosol products are validated, shedding new light on how to improve these products. These advances improve our understanding of the critical role played by aerosols in both the climate and environment. Finally, a perspective on future research is presented.Show less >
Show more >Aerosol is a critical trace component of the atmosphere. Many processes in the Earth's climate system are intimately related to aerosols via their direct and indirect radiative effects. Aerosol effects are not limited to these climatic aspects, however. They are also closely related to human health, photosynthesis, new energy, etc., which makes aerosol a central focus in many research fields. A fundamental requirement for improving our understanding of the diverse aerosol effects is to accumulate high-quality aerosol data by various measurement techniques. Sunphotometer remote sensing is one of the techniques that has been playing an increasingly important role in characterizing aerosols across the world. Much progress has been made on this aspect in China during the past decade, which is the work reviewed in this paper. Three sunphotometer networks have been established to provide high-quality observations of long-term aerosol optical properties across the country. Using this valuable dataset, our understanding of spatiotemporal variability and long-term trends of aerosol optical properties has been much improved. The radiative effects of aerosols both at the bottom and at the top of the atmosphere are comprehensively assessed. Substantial warming of the atmosphere by aerosol absorption is revealed. The long-range transport of dust from the Taklimakan Desert in Northwest China and anthropogenic aerosols from South Asia to the Tibetan Plateau is characterized based on ground-based and satellite remote sensing as well as model simulations. Effective methods to estimate chemical compositions from sunphotometer aerosol products are developed. Dozens of satellite and model aerosol products are validated, shedding new light on how to improve these products. These advances improve our understanding of the critical role played by aerosols in both the climate and environment. Finally, a perspective on future research is presented.Show less >
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Submission date :
2024-01-16T22:04:43Z
2024-02-12T12:24:09Z
2024-02-12T12:24:09Z