• English
    • français
  • Aide
  •  | 
  • Contact
  •  | 
  • À Propos
  •  | 
  • Ouvrir une session
  • Portail HAL
  •  | 
  • Pages Pro Chercheurs
  • EN
  •  / 
  • FR
Voir le document 
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decision-focused predictions via pessimistic ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Type de document :
Direction scientifique d'une publication (ouvrage, numéro spécial de revue, proceedings): Proceedings
DOI :
10.1007/978-3-031-60597-0_9
Titre :
Decision-focused predictions via pessimistic bilevel optimization: a computational study
Auteur(s) :
Bucarey, Víctor [Auteur]
Universidad de O'Higgins [UOH]
Calderón, Sophia [Auteur]
Universidad de O'Higgins [UOH]
Muñoz, Gonzalo [Auteur]
Universidad de Chile = University of Chile [Santiago] [UCHILE]
Semet, Frédéric [Auteur] refId
Integrated Optimization with Complex Structure [INOCS]
Titre de la manifestation scientifique :
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2024)
Titre de la revue :
Lecture Notes in Computer Science
Éditeur :
Springer Nature Switzerland
Lieu de publication :
Cham
Date de publication :
2024
Mot(s)-clé(s) en anglais :
Machine Learning (cs.LG)
Optimization and Control (math.OC)
FOS: Computer and information sciences
FOS: Mathematics
90C30
Discipline(s) HAL :
Computer Science [cs]/Operations Research [math.OC]
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
Dealing with uncertainty in optimization parameters is an important and longstanding challenge. Typically, uncertain parameters are predicted accurately, and then a deterministic optimization problem is solved. However, ...
Lire la suite >
Dealing with uncertainty in optimization parameters is an important and longstanding challenge. Typically, uncertain parameters are predicted accurately, and then a deterministic optimization problem is solved. However, the decisions produced by this so-called \emph{predict-then-optimize} procedure can be highly sensitive to uncertain parameters. In this work, we contribute to recent efforts in producing \emph{decision-focused} predictions, i.e., to build predictive models that are constructed with the goal of minimizing a \emph{regret} measure on the decisions taken with them. We formulate the exact expected regret minimization as a pessimistic bilevel optimization model. Then, using duality arguments, we reformulate it as a non-convex quadratic optimization problem. Finally, we show various computational techniques to achieve tractability. We report extensive computational results on shortest-path instances with uncertain cost vectors. Our results indicate that our approach can improve training performance over the approach of Elmachtoub and Grigas (2022), a state-of-the-art method for decision-focused learning.Lire moins >
Langue :
Anglais
Audience :
Internationale
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Fichiers
Thumbnail
  • 2312.17640
  • Accès libre
  • Accéder au document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017