On the direct image of the adjoint line bundle
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
On the direct image of the adjoint line bundle
Author(s) :
Journal title :
Indian Journal of Pure and Applied Mathematics
Pages :
257-263
Publisher :
Springer
Publication date :
2023-10-04
ISSN :
0019-5588
HAL domain(s) :
Mathématiques [math]/Géométrie algébrique [math.AG]
English abstract : [en]
We give an algebraic-geometric proof of the fact that for a smooth fibration $\pi: X \longrightarrow Y$ of projective varieties, the direct image $\pi_*(L\otimes K_{X/Y})$ of the adjoint line bundle of an ample (respectively, ...
Show more >We give an algebraic-geometric proof of the fact that for a smooth fibration $\pi: X \longrightarrow Y$ of projective varieties, the direct image $\pi_*(L\otimes K_{X/Y})$ of the adjoint line bundle of an ample (respectively, nef and $\pi$-strongly big) line bundle $L$ is ample (respectively, nef and big).Show less >
Show more >We give an algebraic-geometric proof of the fact that for a smooth fibration $\pi: X \longrightarrow Y$ of projective varieties, the direct image $\pi_*(L\otimes K_{X/Y})$ of the adjoint line bundle of an ample (respectively, nef and $\pi$-strongly big) line bundle $L$ is ample (respectively, nef and big).Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- 2310.02764
- Open access
- Access the document