Reinforcement-learning robotic sailboats: ...
Document type :
Communication dans un congrès avec actes
Title :
Reinforcement-learning robotic sailboats: simulator and preliminary results
Author(s) :
Vasconcellos, Eduardo [Auteur]
Universidade Federal Fluminense [Rio de Janeiro] [UFF]
Inria Lille - Nord Europe
Sampaio, Ronald [Auteur]
Araújo, André [Auteur]
Universidade Federal Fluminense [Rio de Janeiro] [UFF]
Inria Lille - Nord Europe
Gonzales Clua, Esteban [Auteur]
Fluminense Federal University [Niterói]
Preux, Philippe [Auteur]
Scool [Scool]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille
Guerra, Raphael [Auteur]
Gonçalves, Luiz [Auteur]
Universidade Federal do Rio Grande do Norte [Natal] [UFRN]
Martí, Luis [Auteur]
Inria Chile
Lira, Hernan [Auteur]
Inria Chile
Sanchez-Pi, Nayat [Auteur]
Inria Chile
Universidade Federal Fluminense [Rio de Janeiro] [UFF]
Inria Lille - Nord Europe
Sampaio, Ronald [Auteur]
Araújo, André [Auteur]
Universidade Federal Fluminense [Rio de Janeiro] [UFF]
Inria Lille - Nord Europe
Gonzales Clua, Esteban [Auteur]
Fluminense Federal University [Niterói]
Preux, Philippe [Auteur]
Scool [Scool]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille
Guerra, Raphael [Auteur]
Gonçalves, Luiz [Auteur]
Universidade Federal do Rio Grande do Norte [Natal] [UFRN]
Martí, Luis [Auteur]
Inria Chile
Lira, Hernan [Auteur]
Inria Chile
Sanchez-Pi, Nayat [Auteur]
Inria Chile
Conference title :
NeurIPS 2023 Workshop on Robot Learning Workshop: Pretraining, Fine-Tuning, and Generalization with Large Scale Models
City :
New Orelans
Country :
Etats-Unis d'Amérique
Start date of the conference :
2023-12-11
English keyword(s) :
artificial intelligence, reinforcement learning, unmanned surface vessel
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Modélisation et simulation
Informatique [cs]/Robotique [cs.RO]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Modélisation et simulation
Informatique [cs]/Robotique [cs.RO]
English abstract : [en]
This work focuses on the main challenges and problems in developing a virtual oceanic environment reproducing real experiments using Unmanned Surface Vehicles (USV) digital twins. We introduce the key features for building ...
Show more >This work focuses on the main challenges and problems in developing a virtual oceanic environment reproducing real experiments using Unmanned Surface Vehicles (USV) digital twins. We introduce the key features for building virtual worlds, considering using Reinforcement Learning (RL) agents for autonomous navigation and control. With this in mind, the main problems concern the definition of the simulation equations (physics and mathematics), their effective implementation, and how to include strategies for simulated control and perception (sensors) to be used with RL. We present the modeling, implementation steps, and challenges required to create a functional digital twin based on a real robotic sailing vessel. The application is immediate for developing navigation algorithms based on RL to be applied on real boats.Show less >
Show more >This work focuses on the main challenges and problems in developing a virtual oceanic environment reproducing real experiments using Unmanned Surface Vehicles (USV) digital twins. We introduce the key features for building virtual worlds, considering using Reinforcement Learning (RL) agents for autonomous navigation and control. With this in mind, the main problems concern the definition of the simulation equations (physics and mathematics), their effective implementation, and how to include strategies for simulated control and perception (sensors) to be used with RL. We present the modeling, implementation steps, and challenges required to create a functional digital twin based on a real robotic sailing vessel. The application is immediate for developing navigation algorithms based on RL to be applied on real boats.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- neurips_wrl2023.pdf
- Open access
- Access the document