Unveiling the Origins of High Ionic ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Unveiling the Origins of High Ionic Conductivity in Lithium Phosphorus Oxynitride Amorphous Electrolytes
Author(s) :
Landry, A. K. [Auteur]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Bayzou, Racha [Auteur]
Institut Michel Eugène Chevreul - FR 2638 [IMEC]
Benayad, A. [Auteur]
ARC-Nucleart CEA Grenoble [NUCLEART]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Trebosc, Julien [Auteur]
Institut Michel Eugène Chevreul - FR 2638 [IMEC]
Pourpoint, Frederique [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Lafon, Olivier [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Cras, F. L. [Auteur]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Le Cras, B. P. [Auteur]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Nuernberg, R. B. [Auteur]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Bayzou, Racha [Auteur]
Institut Michel Eugène Chevreul - FR 2638 [IMEC]
Benayad, A. [Auteur]
ARC-Nucleart CEA Grenoble [NUCLEART]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Trebosc, Julien [Auteur]

Institut Michel Eugène Chevreul - FR 2638 [IMEC]
Pourpoint, Frederique [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Lafon, Olivier [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Cras, F. L. [Auteur]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Le Cras, B. P. [Auteur]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Nuernberg, R. B. [Auteur]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Journal title :
Chemistry of Materials
Abbreviated title :
Chem. Mat.
Volume number :
-
Pages :
-
Publication date :
2023-11-25
ISSN :
0897-4756
HAL domain(s) :
Chimie/Chimie inorganique
English abstract : [en]
Lithium phosphorus oxynitride, having an amorphous structure, has enabled all-solid-state thin film batteries with lithium metal anodes and high-voltage cathodes since the nineties. Nevertheless, the origins of its outstanding ...
Show more >Lithium phosphorus oxynitride, having an amorphous structure, has enabled all-solid-state thin film batteries with lithium metal anodes and high-voltage cathodes since the nineties. Nevertheless, the origins of its outstanding ionic conductivity compared to its crystalline counterparts, as well as the interplay between structure and ionic transport in this electrolyte, have remained elusive. Herein, we have applied a compelling methodology based on impedance spectroscopy analyses to isolate the distinct energetic contributions for the ionic conduction process, namely, the enthalpies for defect formation and migration. The variations of these enthalpies with the nitrogen content are correlated with structural aspects unveiled by solid-state nuclear magnetic resonance (NMR) and depth profiling X-ray photoelectron spectroscopies. The main findings indicate that the amorphous structure, inherent to radiofrequency magnetron sputtering synthesis, is the root of a striking decrease of the enthalpy related to defect formation, while the nitrogen incorporation plays a crucial role in Li+ ion mobility by forming bridging species, which tend to lower the enthalpy of migration.Show less >
Show more >Lithium phosphorus oxynitride, having an amorphous structure, has enabled all-solid-state thin film batteries with lithium metal anodes and high-voltage cathodes since the nineties. Nevertheless, the origins of its outstanding ionic conductivity compared to its crystalline counterparts, as well as the interplay between structure and ionic transport in this electrolyte, have remained elusive. Herein, we have applied a compelling methodology based on impedance spectroscopy analyses to isolate the distinct energetic contributions for the ionic conduction process, namely, the enthalpies for defect formation and migration. The variations of these enthalpies with the nitrogen content are correlated with structural aspects unveiled by solid-state nuclear magnetic resonance (NMR) and depth profiling X-ray photoelectron spectroscopies. The main findings indicate that the amorphous structure, inherent to radiofrequency magnetron sputtering synthesis, is the root of a striking decrease of the enthalpy related to defect formation, while the nitrogen incorporation plays a crucial role in Li+ ion mobility by forming bridging species, which tend to lower the enthalpy of migration.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Submission date :
2024-01-20T00:53:23Z
2024-02-12T08:10:03Z
2024-02-12T08:10:03Z
Files
- document
- Open access
- manuscrit accepté
- Access the document