On the rational homotopy type of embedding ...
Document type :
Pré-publication ou Document de travail
Title :
On the rational homotopy type of embedding spaces of manifolds in $R^n$
Author(s) :
Fresse, Benoit [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Turchin, Victor [Auteur]
Department of Mathematics [University of Kansas]
Willwacher, Thomas [Auteur]
Institut für Mathematik [Zürich]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Turchin, Victor [Auteur]
Department of Mathematics [University of Kansas]
Willwacher, Thomas [Auteur]
Institut für Mathematik [Zürich]
Publication date :
2020-08-18
HAL domain(s) :
Mathématiques [math]/Topologie algébrique [math.AT]
English abstract : [en]
We study the spaces of embeddings of manifolds in a Euclidean space. More precisely we look at the homotopy fiber of the inclusion of these spaces to the spaces of immersions. As a main result we express the rational ...
Show more >We study the spaces of embeddings of manifolds in a Euclidean space. More precisely we look at the homotopy fiber of the inclusion of these spaces to the spaces of immersions. As a main result we express the rational homotopy type of connected components of those embedding spaces through combinatorially defined $L_\infty$-algebras of diagrams.Show less >
Show more >We study the spaces of embeddings of manifolds in a Euclidean space. More precisely we look at the homotopy fiber of the inclusion of these spaces to the spaces of immersions. As a main result we express the rational homotopy type of connected components of those embedding spaces through combinatorially defined $L_\infty$-algebras of diagrams.Show less >
Language :
Anglais
ANR Project :
Comment :
58 pages
Collections :
Source :
Files
- document
- Open access
- Access the document
- 2008.08146.pdf
- Open access
- Access the document
- 2008.08146
- Open access
- Access the document