Methane-hydrogen-rich fluid migration may ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Methane-hydrogen-rich fluid migration may trigger seismic failure in subduction zones at forearc depths
Auteur(s) :
Giuntoli, Francesco [Auteur]
Alma Mater Studiorum Università di Bologna = University of Bologna [UNIBO]
Menegon, Luca [Auteur]
Oslo Metropolitan University [OsloMet]
Siron, Guillaume [Auteur]
Alma Mater Studiorum Università di Bologna = University of Bologna [UNIBO]
Cognigni, Flavio [Auteur]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Leroux, Hugues [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Compagnoni, Roberto [Auteur]
Università degli studi di Torino = University of Turin [UNITO]
Rossi, Marco [Auteur]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Vitale Brovarone, Alberto [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Alma Mater Studiorum Università di Bologna = University of Bologna [UNIBO]
Alma Mater Studiorum Università di Bologna = University of Bologna [UNIBO]
Menegon, Luca [Auteur]
Oslo Metropolitan University [OsloMet]
Siron, Guillaume [Auteur]
Alma Mater Studiorum Università di Bologna = University of Bologna [UNIBO]
Cognigni, Flavio [Auteur]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Leroux, Hugues [Auteur]

Unité Matériaux et Transformations (UMET) - UMR 8207
Compagnoni, Roberto [Auteur]
Università degli studi di Torino = University of Turin [UNITO]
Rossi, Marco [Auteur]
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
Vitale Brovarone, Alberto [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Alma Mater Studiorum Università di Bologna = University of Bologna [UNIBO]
Titre de la revue :
Nature Communications
Nom court de la revue :
Nat Commun
Numéro :
15
Éditeur :
Springer Science and Business Media LLC
Date de publication :
2024-01-11
ISSN :
2041-1723
Discipline(s) HAL :
Planète et Univers [physics]/Sciences de la Terre
Résumé en anglais : [en]
Metamorphic fluids, faults, and shear zones are carriers of carbon from the deep Earth to shallower reservoirs. Some of these fluids are reduced and transport energy sources, like H2 and light hydrocarbons. Mechanisms and ...
Lire la suite >Metamorphic fluids, faults, and shear zones are carriers of carbon from the deep Earth to shallower reservoirs. Some of these fluids are reduced and transport energy sources, like H2 and light hydrocarbons. Mechanisms and pathways capable of transporting these deep energy sources towards shallower reservoirs remain unidentified. Here we present geological evidence of failure of mechanically strong rocks due to the accumulation of CH4-H2-rich fluids at deep forearc depths, which ultimately reached supralithostatic pore fluid pressure. These fluids originated from adjacent reduction of carbonates by H2-rich fluids during serpentinization at eclogite-to-blueschist-facies conditions. Thermodynamic modeling predicts that the production and accumulation of CH4-H2-rich aqueous fluids can produce fluid overpressure more easily than carbon-poor and CO2-rich aqueous fluids. This study provides evidence for the migration of deep Earth energy sources along tectonic discontinuities, and suggests causal relationships with brittle failure of hard rock types that may trigger seismic activity at forearc depths.Lire moins >
Lire la suite >Metamorphic fluids, faults, and shear zones are carriers of carbon from the deep Earth to shallower reservoirs. Some of these fluids are reduced and transport energy sources, like H2 and light hydrocarbons. Mechanisms and pathways capable of transporting these deep energy sources towards shallower reservoirs remain unidentified. Here we present geological evidence of failure of mechanically strong rocks due to the accumulation of CH4-H2-rich fluids at deep forearc depths, which ultimately reached supralithostatic pore fluid pressure. These fluids originated from adjacent reduction of carbonates by H2-rich fluids during serpentinization at eclogite-to-blueschist-facies conditions. Thermodynamic modeling predicts that the production and accumulation of CH4-H2-rich aqueous fluids can produce fluid overpressure more easily than carbon-poor and CO2-rich aqueous fluids. This study provides evidence for the migration of deep Earth energy sources along tectonic discontinuities, and suggests causal relationships with brittle failure of hard rock types that may trigger seismic activity at forearc depths.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2024-02-07T13:36:52Z
2024-02-08T08:04:07Z
2024-02-08T08:04:07Z
Fichiers
- s41467-023-44641-w.pdf
- Version éditeur
- Accès libre
- Accéder au document