Singular Holomorphic Foliations by Curves ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Singular Holomorphic Foliations by Curves II: Negative Lyapunov Exponent
Auteur(s) :
Titre de la revue :
The Journal of Geometric Analysis
Pagination :
315
Éditeur :
Springer
Date de publication :
2023-07-18
ISSN :
1050-6926
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
Let F be a holomorphic foliation by Riemann surfaces defined on a compact complexprojective surface X satisfying the following two conditions: the singular points of Fare all hyperbolic; F is Brody hyperbolic. Then we ...
Lire la suite >Let F be a holomorphic foliation by Riemann surfaces defined on a compact complexprojective surface X satisfying the following two conditions: the singular points of Fare all hyperbolic; F is Brody hyperbolic. Then we establish cohomological formulasfor the Lyapunov exponent and the Poincaré mass of an extremal positive ddc -closedcurrent tangent to F . If, moreover, there is no nonzero positive closed current tangentto F , then we show that the Lyapunov exponent χ (F ) of F , which is, by definition,the Lyapunov exponent of the unique normalized positive ddc -closed current tangentto F , is a strictly negative real number. As an application, we compute the Lyapunovexponent of a generic foliation with a given degree in P2 .Lire moins >
Lire la suite >Let F be a holomorphic foliation by Riemann surfaces defined on a compact complexprojective surface X satisfying the following two conditions: the singular points of Fare all hyperbolic; F is Brody hyperbolic. Then we establish cohomological formulasfor the Lyapunov exponent and the Poincaré mass of an extremal positive ddc -closedcurrent tangent to F . If, moreover, there is no nonzero positive closed current tangentto F , then we show that the Lyapunov exponent χ (F ) of F , which is, by definition,the Lyapunov exponent of the unique normalized positive ddc -closed current tangentto F , is a strictly negative real number. As an application, we compute the Lyapunovexponent of a generic foliation with a given degree in P2 .Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- 1812.10125
- Accès libre
- Accéder au document