Approches informationnelles pour une ...
Document type :
Thèse
Title :
Approches informationnelles pour une navigation autonome collaborative de robots d'exploration de zones à risques
English title :
Informationnel approach for collaborative autonomies navigation robots for exploration of harsh environment
Author(s) :
Daass, Bilal [Auteur]
Université de Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Thesis director(s) :
Denis POMORSKI
Kamel Haddadi
Kamel Haddadi
Defence date :
2020-12-17
Accredited body :
Université de Lille
Doctoral school :
MADIS (ED 631)
Keyword(s) :
Fusion de donnée
estimation
filtre Bayesian
tolérance aux défauts
théorie de l'information
système multi-robots
micro-onde
analyseur de réseaux
estimation
filtre Bayesian
tolérance aux défauts
théorie de l'information
système multi-robots
micro-onde
analyseur de réseaux
English keyword(s) :
Information theory
multi-robots systems
data fusion
multi-robots systems
data fusion
HAL domain(s) :
Sciences de l'ingénieur [physics]
French abstract :
Ces dernières années, de nombreux travaux ont été menés afin de fournir une estimation précise de l'état d'un système dynamique. Dans cette thèse, nous ciblons les systèmes composés de soussystèmes collaboratifs possédant ...
Show more >Ces dernières années, de nombreux travaux ont été menés afin de fournir une estimation précise de l'état d'un système dynamique. Dans cette thèse, nous ciblons les systèmes composés de soussystèmes collaboratifs possédant une multitude de capteurs. Nous proposons un filtre combinant les avantages du filtre de Kalman et du filtre informationnel, nécessitant une charge de calculs bien moins élevée. Afin de prendre en compte la méconnaissance des covariances des mesures, une fusion multicapteurs basée sur l'intersection des covariances est analysée en termes de charge calculatoire. Trois architectures de fusion multi-capteurs sont dès lors considérées. On réalise, sur les différents composants de ces architectures, une analyse fine de la répartition de la charge calculatoire du filtre et de l'algorithme d'intersection des covariances. Dans l'objectif de rendre un système tolérant aux défauts, des méthodes statistiques informationnelles sont développées. Elles sont applicables à toute méthode basée sur le rapport de vraisemblance généralisé, entraînant un seuillage adaptatif de ce rapport. Leurs mises en œuvre à travers deux types de cartes de contrôle permettent une détection rapide des défaillances des capteurs. Nos approches théoriques sont validées à travers un système de robots mobiles collaboratifs. Nous intégrons une phase de diagnostic et de détection de défauts des capteurs. Celle-ci est basée sur l'intégration de ces méthodes statistiques informationnelles dans le processus de fusion et d'estimation composé d'un filtre bayésien et de l'intersection des covariances. L'objectif est d'assurer une navigation autonome sûre, précise et tolérante aux défaillances des capteurs. Enfin, nous présentons une preuve de concept d'une méthode de contrôle et d'évaluation non destructive des matériaux dans l'environnement immédiat des robots. En particulier, il s'agit d'introduire un capteur hyperfréquence pour l'interaction entre l'onde électromagnétique propagée et le matériau sous investigation. Cette méthode, connue sous le vocable radar, a connu un essor grandissant dans les laboratoires de recherche et dans les applications courantes liées notamment à la mesure de vitesse. Néanmoins, sa transposition sur des robots mobiles collaboratifs demeure un challenge pour adresser l'évaluation sans contact de matériaux, notamment en environnement sévère. Elle consiste à déterminer les caractéristiques du matériau sous test à l'aide de capteurs micro-ondes embarqués.Show less >
Show more >Ces dernières années, de nombreux travaux ont été menés afin de fournir une estimation précise de l'état d'un système dynamique. Dans cette thèse, nous ciblons les systèmes composés de soussystèmes collaboratifs possédant une multitude de capteurs. Nous proposons un filtre combinant les avantages du filtre de Kalman et du filtre informationnel, nécessitant une charge de calculs bien moins élevée. Afin de prendre en compte la méconnaissance des covariances des mesures, une fusion multicapteurs basée sur l'intersection des covariances est analysée en termes de charge calculatoire. Trois architectures de fusion multi-capteurs sont dès lors considérées. On réalise, sur les différents composants de ces architectures, une analyse fine de la répartition de la charge calculatoire du filtre et de l'algorithme d'intersection des covariances. Dans l'objectif de rendre un système tolérant aux défauts, des méthodes statistiques informationnelles sont développées. Elles sont applicables à toute méthode basée sur le rapport de vraisemblance généralisé, entraînant un seuillage adaptatif de ce rapport. Leurs mises en œuvre à travers deux types de cartes de contrôle permettent une détection rapide des défaillances des capteurs. Nos approches théoriques sont validées à travers un système de robots mobiles collaboratifs. Nous intégrons une phase de diagnostic et de détection de défauts des capteurs. Celle-ci est basée sur l'intégration de ces méthodes statistiques informationnelles dans le processus de fusion et d'estimation composé d'un filtre bayésien et de l'intersection des covariances. L'objectif est d'assurer une navigation autonome sûre, précise et tolérante aux défaillances des capteurs. Enfin, nous présentons une preuve de concept d'une méthode de contrôle et d'évaluation non destructive des matériaux dans l'environnement immédiat des robots. En particulier, il s'agit d'introduire un capteur hyperfréquence pour l'interaction entre l'onde électromagnétique propagée et le matériau sous investigation. Cette méthode, connue sous le vocable radar, a connu un essor grandissant dans les laboratoires de recherche et dans les applications courantes liées notamment à la mesure de vitesse. Néanmoins, sa transposition sur des robots mobiles collaboratifs demeure un challenge pour adresser l'évaluation sans contact de matériaux, notamment en environnement sévère. Elle consiste à déterminer les caractéristiques du matériau sous test à l'aide de capteurs micro-ondes embarqués.Show less >
English abstract : [en]
Ces dernières années, de nombreux travaux ont été menés afin de fournir une estimation précise de l'état d'un système dynamique. Dans cette thèse, nous ciblons les systèmes composés de soussystèmes collaboratifs possédant ...
Show more >Ces dernières années, de nombreux travaux ont été menés afin de fournir une estimation précise de l'état d'un système dynamique. Dans cette thèse, nous ciblons les systèmes composés de soussystèmes collaboratifs possédant une multitude de capteurs. Nous proposons un filtre combinant les avantages du filtre de Kalman et du filtre informationnel, nécessitant une charge de calculs bien moins élevée. Afin de prendre en compte la méconnaissance des covariances des mesures, une fusion multicapteurs basée sur l'intersection des covariances est analysée en termes de charge calculatoire. Trois architectures de fusion multi-capteurs sont dès lors considérées. On réalise, sur les différents composants de ces architectures, une analyse fine de la répartition de la charge calculatoire du filtre et de l'algorithme d'intersection des covariances. Dans l'objectif de rendre un système tolérant aux défauts, des méthodes statistiques informationnelles sont développées. Elles sont applicables à toute méthode basée sur le rapport de vraisemblance généralisé, entraînant un seuillage adaptatif de ce rapport. Leurs mises en œuvre à travers deux types de cartes de contrôle permettent une détection rapide des défaillances des capteurs. Nos approches théoriques sont validées à travers un système de robots mobiles collaboratifs. Nous intégrons une phase de diagnostic et de détection de défauts des capteurs. Celle-ci est basée sur l'intégration de ces méthodes statistiques informationnelles dans le processus de fusion et d'estimation composé d'un filtre bayésien et de l'intersection des covariances. L'objectif est d'assurer une navigation autonome sûre, précise et tolérante aux défaillances des capteurs. Enfin, nous présentons une preuve de concept d'une méthode de contrôle et d'évaluation non destructive des matériaux dans l'environnement immédiat des robots. En particulier, il s'agit d'introduire un capteur hyperfréquence pour l'interaction entre l'onde électromagnétique propagée et le matériau sous investigation. Cette méthode, connue sous le vocable radar, a connu un essor grandissant dans les laboratoires de recherche et dans les applications courantes liées notamment à la mesure de vitesse. Néanmoins, sa transposition sur des robots mobiles collaboratifs demeure un challenge pour adresser l'évaluation sans contact de matériaux, notamment en environnement sévère. Elle consiste à déterminer les caractéristiques du matériau sous test à l'aide de capteurs micro-ondes embarqués.Show less >
Show more >Ces dernières années, de nombreux travaux ont été menés afin de fournir une estimation précise de l'état d'un système dynamique. Dans cette thèse, nous ciblons les systèmes composés de soussystèmes collaboratifs possédant une multitude de capteurs. Nous proposons un filtre combinant les avantages du filtre de Kalman et du filtre informationnel, nécessitant une charge de calculs bien moins élevée. Afin de prendre en compte la méconnaissance des covariances des mesures, une fusion multicapteurs basée sur l'intersection des covariances est analysée en termes de charge calculatoire. Trois architectures de fusion multi-capteurs sont dès lors considérées. On réalise, sur les différents composants de ces architectures, une analyse fine de la répartition de la charge calculatoire du filtre et de l'algorithme d'intersection des covariances. Dans l'objectif de rendre un système tolérant aux défauts, des méthodes statistiques informationnelles sont développées. Elles sont applicables à toute méthode basée sur le rapport de vraisemblance généralisé, entraînant un seuillage adaptatif de ce rapport. Leurs mises en œuvre à travers deux types de cartes de contrôle permettent une détection rapide des défaillances des capteurs. Nos approches théoriques sont validées à travers un système de robots mobiles collaboratifs. Nous intégrons une phase de diagnostic et de détection de défauts des capteurs. Celle-ci est basée sur l'intégration de ces méthodes statistiques informationnelles dans le processus de fusion et d'estimation composé d'un filtre bayésien et de l'intersection des covariances. L'objectif est d'assurer une navigation autonome sûre, précise et tolérante aux défaillances des capteurs. Enfin, nous présentons une preuve de concept d'une méthode de contrôle et d'évaluation non destructive des matériaux dans l'environnement immédiat des robots. En particulier, il s'agit d'introduire un capteur hyperfréquence pour l'interaction entre l'onde électromagnétique propagée et le matériau sous investigation. Cette méthode, connue sous le vocable radar, a connu un essor grandissant dans les laboratoires de recherche et dans les applications courantes liées notamment à la mesure de vitesse. Néanmoins, sa transposition sur des robots mobiles collaboratifs demeure un challenge pour adresser l'évaluation sans contact de matériaux, notamment en environnement sévère. Elle consiste à déterminer les caractéristiques du matériau sous test à l'aide de capteurs micro-ondes embarqués.Show less >
Language :
Français
Collections :
Source :