Réseau de neurones convolutif pour ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Réseau de neurones convolutif pour l'extraction d'attributs de texture à partir d'images multispectrales
Author(s) :
Amziane, Anis [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Losson, Olivier [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Mathon, Benjamin [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Macaire, Ludovic [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Losson, Olivier [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Mathon, Benjamin [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Macaire, Ludovic [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
COmpression et REprésentation des Signaux Audiovisuels (CORESA 2023)
City :
Lille
Country :
France
Start date of the conference :
2023-06-07
Keyword(s) :
Imagerie multispectrale
Texture
Matrice de filtres multispectraux (MSFA)
Classification
Segmentation
Texture
Matrice de filtres multispectraux (MSFA)
Classification
Segmentation
HAL domain(s) :
Informatique [cs]/Traitement des images [eess.IV]
French abstract :
Les caméras multispectrales de type "snapshot" équipées d'une matrice de filtres optiques multispectraux (MSFA) acquièrent instantanément plusieurs bandes spectrales et fournissent une image brute dans laquelle un seul ...
Show more >Les caméras multispectrales de type "snapshot" équipées d'une matrice de filtres optiques multispectraux (MSFA) acquièrent instantanément plusieurs bandes spectrales et fournissent une image brute dans laquelle un seul canal est disponible pour chaque pixel. Les caractéristiques de texture sont classiquement extraites d'images entièrement définies qui sont estimées par dématriçage. Cette procédure peut toutefois générer des artefacts spatio-spectraux. En outre, les coûts de calculs de l'extraction d'attributs de texture ainsi que la dimension de ces derniers augmentent avec le nombre de bandes spectrales échantillonnées par les filtres de la caméra. Dans cet article, nous proposons une approche originale basée sur un réseau neuronal convolutif appelé MSFA-Net pour capturer des interactions spatio-spectrales dans les images brutes à coûts de calcul réduits. Les expériences de classification d'images multispectrales et de segmentation d'images acquises en conditions extérieures montrent que l'approche proposée surpasse plusieurs descripteurs de l'état de l'art.Show less >
Show more >Les caméras multispectrales de type "snapshot" équipées d'une matrice de filtres optiques multispectraux (MSFA) acquièrent instantanément plusieurs bandes spectrales et fournissent une image brute dans laquelle un seul canal est disponible pour chaque pixel. Les caractéristiques de texture sont classiquement extraites d'images entièrement définies qui sont estimées par dématriçage. Cette procédure peut toutefois générer des artefacts spatio-spectraux. En outre, les coûts de calculs de l'extraction d'attributs de texture ainsi que la dimension de ces derniers augmentent avec le nombre de bandes spectrales échantillonnées par les filtres de la caméra. Dans cet article, nous proposons une approche originale basée sur un réseau neuronal convolutif appelé MSFA-Net pour capturer des interactions spatio-spectrales dans les images brutes à coûts de calcul réduits. Les expériences de classification d'images multispectrales et de segmentation d'images acquises en conditions extérieures montrent que l'approche proposée surpasse plusieurs descripteurs de l'état de l'art.Show less >
Language :
Français
Peer reviewed article :
Oui
Audience :
Nationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- CORESA_2023_AA_ic.pdf
- Open access
- Access the document