A Fast and Robust Third-Order Multivariate ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
A Fast and Robust Third-Order Multivariate Calibration Approach Coupled with Excitation–Emission Matrix Phosphorescence for the Quantification and Oxidation Kinetic Study of Fluorene in Wastewater Samples
Author(s) :
Qing, Xiang-Dong [Auteur]
Zhang, Xiao-Hua [Auteur]
An, Rong [Auteur]
Zhang, Jin [Auteur]
Xu, Ling [Auteur]
Duponchel, Ludovic [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Zhang, Xiao-Hua [Auteur]
An, Rong [Auteur]
Zhang, Jin [Auteur]
Xu, Ling [Auteur]
Duponchel, Ludovic [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Journal title :
Chemosensors
Volume number :
11
Publication date :
2023
English keyword(s) :
third-order multivariate calibration
SWAQLD
AQLD
PARAFAC
phosphorescence
fluorene
wastewater
SWAQLD
AQLD
PARAFAC
phosphorescence
fluorene
wastewater
HAL domain(s) :
Chimie
English abstract : [en]
Human activity today produces a large number of pollutants that end up in the environment, such as soil, water, and airborne particles. The first objective of this work is to introduce a new third-order multivariate ...
Show more >Human activity today produces a large number of pollutants that end up in the environment, such as soil, water, and airborne particles. The first objective of this work is to introduce a new third-order multivariate calibration approach called self-weighted alternating quadrilinear decomposition (SWAQLD) for the analysis of organic pollutant of fluorene (FLU) in different water systems. One simulated and two real four-way data sets are used to study the potential of the proposed approach in comparison with two classical algorithms, namely alternating quadrilinear decomposition (AQLD) and parallel factor analysis (PARAFAC). The results of simulated data show that SWAQLD inherits the advantages of PARAFAC in terms of not only tolerance to experimental noise but also a fast convergence and a certain robustness to overestimation of the rank of the models from AQLD. The second objective of this work is to propose a new way of generating third-order data using excitation–emission matrix phosphorescence (EEMP) at room temperature for the study of the kinetic process of oxidation of FLU in complex chemical systems. The obtained rate constant and half-life of the FLU oxidation, on average, are 0.015 min−1 and 45.5 min for free-interference water and 0.017 min−1 and 40.0 min for wastewater, respectively. Research results show that SWAQLD coupled with EEMP allows the quantification and kinetic monitoring of FLU in analytical conditions of different complexities with excellent robustness to the choice of the number of model components.Show less >
Show more >Human activity today produces a large number of pollutants that end up in the environment, such as soil, water, and airborne particles. The first objective of this work is to introduce a new third-order multivariate calibration approach called self-weighted alternating quadrilinear decomposition (SWAQLD) for the analysis of organic pollutant of fluorene (FLU) in different water systems. One simulated and two real four-way data sets are used to study the potential of the proposed approach in comparison with two classical algorithms, namely alternating quadrilinear decomposition (AQLD) and parallel factor analysis (PARAFAC). The results of simulated data show that SWAQLD inherits the advantages of PARAFAC in terms of not only tolerance to experimental noise but also a fast convergence and a certain robustness to overestimation of the rank of the models from AQLD. The second objective of this work is to propose a new way of generating third-order data using excitation–emission matrix phosphorescence (EEMP) at room temperature for the study of the kinetic process of oxidation of FLU in complex chemical systems. The obtained rate constant and half-life of the FLU oxidation, on average, are 0.015 min−1 and 45.5 min for free-interference water and 0.017 min−1 and 40.0 min for wastewater, respectively. Research results show that SWAQLD coupled with EEMP allows the quantification and kinetic monitoring of FLU in analytical conditions of different complexities with excellent robustness to the choice of the number of model components.Show less >
Language :
Anglais
Audience :
Non spécifiée
Popular science :
Non
Administrative institution(s) :
ENSCL
CNRS
Université de Lille
CNRS
Université de Lille
Collections :
Research team(s) :
Propriétés magnéto structurales des matériaux (PMSM)
Submission date :
2024-02-21T17:12:01Z
2024-02-27T09:12:59Z
2024-02-27T09:12:59Z
Files
- chemosensors-11-00053-v2.pdf
- Non spécifié
- Open access
- Access the document