VS2N (Visualization tool for Spiking Neural ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...)
Title :
VS2N (Visualization tool for Spiking Neural Networks)
Author(s) :
Hammouda, Elbez [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Mohammed Kamel, Benhaoua [Auteur]
Université d'Oran 1 Ahmed Ben Bella [Oran]
Devienne, Philippe [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Pierre, Boulet [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Mohammed Kamel, Benhaoua [Auteur]
Université d'Oran 1 Ahmed Ben Bella [Oran]
Devienne, Philippe [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Pierre, Boulet [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
English keyword(s) :
Spiking neural networks
neuromorphic computing
visualization
analysis
big data
neuromorphic computing
visualization
analysis
big data
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
Bio-inspired computing architectures enable ultralow power consumption and massive parallelism using neuromorphic computing, which is apt to implement Spiking Neural Networks (SNN). Such architectures are particularly ...
Show more >Bio-inspired computing architectures enable ultralow power consumption and massive parallelism using neuromorphic computing, which is apt to implement Spiking Neural Networks (SNN). Such architectures are particularly suitable for energy-constrained applications. A deeper understanding of Spiking Neural Networks (SNN) behavior during training is needed to improve these architectures. This paper presents VS2N, a web-based tool for interactive visualization and analysis of SNN activity over time. This simulator-independent tool offers a way to examine, analyze and validate different hypotheses about SNN activity. We present available analysis modules and use-cases of the tool as an example.Show less >
Show more >Bio-inspired computing architectures enable ultralow power consumption and massive parallelism using neuromorphic computing, which is apt to implement Spiking Neural Networks (SNN). Such architectures are particularly suitable for energy-constrained applications. A deeper understanding of Spiking Neural Networks (SNN) behavior during training is needed to improve these architectures. This paper presents VS2N, a web-based tool for interactive visualization and analysis of SNN activity over time. This simulator-independent tool offers a way to examine, analyze and validate different hypotheses about SNN activity. We present available analysis modules and use-cases of the tool as an example.Show less >
Language :
Anglais
Collections :
Source :