<i>In silico</i> strategy to design an ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
PMID :
URL permanente :
Titre :
<i>In silico</i> strategy to design an efficient organic photoswitch based on excited-state cation transfer.
Auteur(s) :
De Thieulloy, Laure [Auteur]
Institute of Chemistry for Life and Health Sciences [iCLeHS]
Mongin, Cédric [Auteur]
Photophysique et Photochimie Supramoléculaires et Macromoléculaires [PPSM]
Ecole Normale Supérieure Paris-Saclay [ENS Paris Saclay]
Leray, I. [Auteur]
Photophysique et Photochimie Supramoléculaires et Macromoléculaires [PPSM]
Guerrin, Clément [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Buntinx, Guy [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Aloise, Stephane [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Perrier, A. [Auteur]
Institute of Chemistry for Life and Health Sciences [iCLeHS]
Mongin, Cédric [Auteur]
Photophysique et Photochimie Supramoléculaires et Macromoléculaires [PPSM]
Ecole Normale Supérieure Paris-Saclay [ENS Paris Saclay]
Leray, I. [Auteur]
Photophysique et Photochimie Supramoléculaires et Macromoléculaires [PPSM]
Guerrin, Clément [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Buntinx, Guy [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Aloise, Stephane [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Perrier, A. [Auteur]
Titre de la revue :
Physical Chemistry Chemical Physics
Nom court de la revue :
Phys Chem Chem Phys
Date de publication :
2023-12-20
ISSN :
1463-9084
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
A new class of photoswitches and the corresponding elementary photoinduced reaction, the so-called Excited-State Cation Transfer (ESCT), are investigated. This reaction relies on an intramolecular photo-release/photo-complexation ...
Lire la suite >A new class of photoswitches and the corresponding elementary photoinduced reaction, the so-called Excited-State Cation Transfer (ESCT), are investigated. This reaction relies on an intramolecular photo-release/photo-complexation of cation: after irradiation, the cation is translocated from a complexation site 1 to a site 2 during the excited state lifetime. Our purpose is thus to develop a computational strategy based on Density Functional theory (DFT) and its time-dependent counterpart (TD-DFT) to improve the different properties of the ESCT photoswitches, namely (i) the ground state complexation constant K, (ii) the excited state complexation constant K*, (iii) the photoejection properties and (iv) the population of the triplet states from a singlet state via intersystem crossing to increase the lifetime of the excited state. In this work, we are interested in optimizing the ESCT properties of a betaine pyridinium chromophore substituted by a 15-aza-5-crown, that was previously shown to efficiently photoeject a Ca2+ cation from the site 1 but no photo-recapture was observed in the site 2 [Aloïse et al., Phys. Chem. Chem. Phys., 2016, 22, 15384]. To this purpose, we have investigated the impact of the modification of the site 1 on the ESCT properties by introducing different substituents (EDG groups, halogen atoms) at different positions. So far, promising systems have been identified but a simultaneous improvement of all the ESCT photoswitches properties has yet not been achieved.Lire moins >
Lire la suite >A new class of photoswitches and the corresponding elementary photoinduced reaction, the so-called Excited-State Cation Transfer (ESCT), are investigated. This reaction relies on an intramolecular photo-release/photo-complexation of cation: after irradiation, the cation is translocated from a complexation site 1 to a site 2 during the excited state lifetime. Our purpose is thus to develop a computational strategy based on Density Functional theory (DFT) and its time-dependent counterpart (TD-DFT) to improve the different properties of the ESCT photoswitches, namely (i) the ground state complexation constant K, (ii) the excited state complexation constant K*, (iii) the photoejection properties and (iv) the population of the triplet states from a singlet state via intersystem crossing to increase the lifetime of the excited state. In this work, we are interested in optimizing the ESCT properties of a betaine pyridinium chromophore substituted by a 15-aza-5-crown, that was previously shown to efficiently photoeject a Ca2+ cation from the site 1 but no photo-recapture was observed in the site 2 [Aloïse et al., Phys. Chem. Chem. Phys., 2016, 22, 15384]. To this purpose, we have investigated the impact of the modification of the site 1 on the ESCT properties by introducing different substituents (EDG groups, halogen atoms) at different positions. So far, promising systems have been identified but a simultaneous improvement of all the ESCT photoswitches properties has yet not been achieved.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
CNRS
Collections :
Date de dépôt :
2024-02-28T22:04:30Z
2024-03-11T15:09:53Z
2024-03-11T15:09:53Z