An active constraint approach to identify ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
An active constraint approach to identify essential spectral information in noisy data
Author(s) :
Sawall, M. [Auteur]
Ruckebusch, Cyril [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Beese, M. [Auteur]
Francke, R. [Auteur]
Prudlik, A. [Auteur]
Neymeyr, K. [Auteur]
Ruckebusch, Cyril [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Beese, M. [Auteur]
Francke, R. [Auteur]
Prudlik, A. [Auteur]
Neymeyr, K. [Auteur]
Journal title :
Analytica Chimica Acta
Abbreviated title :
Anal Chim Acta
Volume number :
1233
Pages :
340448
Publication date :
2022-10-27
ISSN :
1873-4324
English keyword(s) :
Ray casting
Area of feasible solutions
Essential spectra and frequencies
Multivariate curve resolution
Area of feasible solutions
Essential spectra and frequencies
Multivariate curve resolution
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
Multivariate curve resolution (MCR) methods aim at extracting pure component profiles from mixed spectral data and can be applied to high-dimensional data, e.g., from process spectroscopy or hyperspectral imaging techniques. ...
Show more >Multivariate curve resolution (MCR) methods aim at extracting pure component profiles from mixed spectral data and can be applied to high-dimensional data, e.g., from process spectroscopy or hyperspectral imaging techniques. One often observes that some parts of this data, namely certain rows and columns of the data matrix, are considered essential for MCR outcomes, while other parts are of minor importance. Some methods for determining essential data are known, but all have different disadvantages concerning the application for noisy data. This work presents a new approach on how to detect the essential information for noisy, experimental spectral data. Active nonnegativity constraints in combination with duality arguments are the key ingredients for determining essential spectra and frequency channels. The new approach is conceptually simple, computationally cheap and stable with respect to noise. The algorithm is tested for noisy experimental Raman, UV–Vis and FTIR-SEC data.Show less >
Show more >Multivariate curve resolution (MCR) methods aim at extracting pure component profiles from mixed spectral data and can be applied to high-dimensional data, e.g., from process spectroscopy or hyperspectral imaging techniques. One often observes that some parts of this data, namely certain rows and columns of the data matrix, are considered essential for MCR outcomes, while other parts are of minor importance. Some methods for determining essential data are known, but all have different disadvantages concerning the application for noisy data. This work presents a new approach on how to detect the essential information for noisy, experimental spectral data. Active nonnegativity constraints in combination with duality arguments are the key ingredients for determining essential spectra and frequency channels. The new approach is conceptually simple, computationally cheap and stable with respect to noise. The algorithm is tested for noisy experimental Raman, UV–Vis and FTIR-SEC data.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Submission date :
2024-02-28T22:17:52Z
2024-03-19T09:32:39Z
2024-03-19T09:32:39Z