Heterogeneous Oxysulfide@Fluoride Core/Shell ...
Document type :
Article dans une revue scientifique: Article original
DOI :
PMID :
Permalink :
Title :
Heterogeneous Oxysulfide@Fluoride Core/Shell Nanocrystals for Upconversion-Based Nanothermometry.
Author(s) :
Zou, Qilin [Auteur]
Interactions moléculaires et réactivité chimique et photochimique [IMRCP]
IMRCP - Interfaces Dynamiques et Assemblages Stimulables [IMRCP - IDeAS]
Marcelot, Cécile [Auteur]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Ratel-Ramond, Nicolas [Auteur]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Yi, Xiaodong [Auteur]
Chinese Academy of Sciences [Changchun Branch] [CAS]
Roblin, Pierre [Auteur]
Laboratoire de Génie Chimique [LGC]
Frenzel, Florian [Auteur]
Federal Institute for Materials Research and Testing - Bundesanstalt für Materialforschung und -prüfung [BAM]
Resch-Genger, Ute [Auteur]
Federal Institute for Materials Research and Testing - Bundesanstalt für Materialforschung und -prüfung [BAM]
Eftekhari, Ali [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Bouchet, Aude [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Coudret, Christophe [Auteur]
Interactions moléculaires et réactivité chimique et photochimique [IMRCP]
Verelst, Marc [Auteur]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Chen, Xueyuan [Auteur]
Chinese Academy of Sciences [Beijing] [CAS]
Mauricot, Robert [Auteur]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Roux, Clément [Auteur]
Université de Toulouse [UT]
Interactions moléculaires et réactivité chimique et photochimique [IMRCP]
IMRCP - Interfaces Dynamiques et Assemblages Stimulables [IMRCP - IDeAS]
Marcelot, Cécile [Auteur]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Ratel-Ramond, Nicolas [Auteur]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Yi, Xiaodong [Auteur]
Chinese Academy of Sciences [Changchun Branch] [CAS]
Roblin, Pierre [Auteur]
Laboratoire de Génie Chimique [LGC]
Frenzel, Florian [Auteur]
Federal Institute for Materials Research and Testing - Bundesanstalt für Materialforschung und -prüfung [BAM]
Resch-Genger, Ute [Auteur]
Federal Institute for Materials Research and Testing - Bundesanstalt für Materialforschung und -prüfung [BAM]
Eftekhari, Ali [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Bouchet, Aude [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Coudret, Christophe [Auteur]
Interactions moléculaires et réactivité chimique et photochimique [IMRCP]
Verelst, Marc [Auteur]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Chen, Xueyuan [Auteur]
Chinese Academy of Sciences [Beijing] [CAS]
Mauricot, Robert [Auteur]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Roux, Clément [Auteur]
Université de Toulouse [UT]
Journal title :
ACS Nano
Abbreviated title :
ACS Nano
Publication date :
2022-07-23
ISSN :
1936-086X
English keyword(s) :
Lanthanide-doped nanoparticles
upconversion
quantum yield
heterostructure
lattice strain
temperature sensing
upconversion
quantum yield
heterostructure
lattice strain
temperature sensing
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ...
Show more >Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980 nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert β-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 μs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core-shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs.Show less >
Show more >Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980 nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert β-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 μs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core-shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Research team(s) :
Dynamics, Nanoscopy & Chemometrics (DyNaChem)
Submission date :
2024-02-28T22:22:58Z
2024-03-13T12:04:28Z
2024-03-13T12:04:28Z