Distribution of platinum (Pt), palladium ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Distribution of platinum (Pt), palladium (Pd), and rhodium (Rh) in urban tributaries of the Scheldt River assessed by diffusive gradients in thin films technique (DGT).
Author(s) :
Abdulbur-Alfakhoury, Ehab [Auteur]
Analytical, Environmental and Geo- Chemistry
Trommetter, Guillaume [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Brion, N. [Auteur]
Vrije Universiteit Brussel [Bruxelles] [VUB]
Dumoulin, David [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Reichstädter, M. [Auteur]
Billon, Gabriel [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Leermakers, M. [Auteur]
Baeyens, W. [Auteur]
Analytical, Environmental and Geo- Chemistry
Trommetter, Guillaume [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Brion, N. [Auteur]
Vrije Universiteit Brussel [Bruxelles] [VUB]
Dumoulin, David [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Reichstädter, M. [Auteur]
Billon, Gabriel [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Leermakers, M. [Auteur]
Baeyens, W. [Auteur]
Journal title :
Science of the Total Environment
Abbreviated title :
Sci Total Environ
Volume number :
784
Pages :
147075
Publication date :
2021-05-01
ISSN :
1879-1026
English keyword(s) :
Diffusive gradients in thin films (DGT)
Platinum group elements (PGEs)
River water
Platinum group elements (PGEs)
River water
HAL domain(s) :
Chimie
Sciences de l'environnement/Milieux et Changements globaux
Sciences de l'environnement/Milieux et Changements globaux
English abstract : [en]
The performance of the newly developed DGT technique for the platinum group elements (PGEs) rhodium (Rh), platinum (Pt) and palladium (Pd) was evaluated in two tributaries of the Scheldt River, the Marque River close to ...
Show more >The performance of the newly developed DGT technique for the platinum group elements (PGEs) rhodium (Rh), platinum (Pt) and palladium (Pd) was evaluated in two tributaries of the Scheldt River, the Marque River close to the city of Lille (France), and the Zenne River which flows through the city of Brussels (Belgium). In the Marque River, an interlaboratory comparison was performed between the two laboratories where the DGT techniques dedicated to PGEs were developed (AMGC, VUB & LASIRE, U-Lille). PGEs were also analysed in an effluent of a Brussels hospital and monthly grab sampling was performed at the wastewater treatments plants (WWTPs) of Brussels. The concentrations of the 3 elements are higher in the Zenne River than in the Marque River and much higher Pt concentrations are found in the hospital effluent. Good agreement for Pt was observed between the three selected chelating resins and a relatively good agreement was observed between the two laboratories using the same chelating resin, whereas lower results were observed with the anion-exchange resin. Larger discrepancies between the two laboratories were observed for Pd and no comparison could be made for Rh due to the low natural concentrations. The results show that in small urban rivers with high impact of urbanization, WWTPs are an important source of Pt, resulting from the use of anticancer drugs in hospitals and households. The limited retention of PGEs in WWTPs results in increased concentrations in urban rivers downstream. For Pd and Rh, similar trends were found with other traffic related elements such as Cu, Zn and Pb, showing the highest concentrations in waters collecting runoff from a highway. The data show that these elements, together with Gd, can be useful to trace specific pollution sources and their dispersion.Show less >
Show more >The performance of the newly developed DGT technique for the platinum group elements (PGEs) rhodium (Rh), platinum (Pt) and palladium (Pd) was evaluated in two tributaries of the Scheldt River, the Marque River close to the city of Lille (France), and the Zenne River which flows through the city of Brussels (Belgium). In the Marque River, an interlaboratory comparison was performed between the two laboratories where the DGT techniques dedicated to PGEs were developed (AMGC, VUB & LASIRE, U-Lille). PGEs were also analysed in an effluent of a Brussels hospital and monthly grab sampling was performed at the wastewater treatments plants (WWTPs) of Brussels. The concentrations of the 3 elements are higher in the Zenne River than in the Marque River and much higher Pt concentrations are found in the hospital effluent. Good agreement for Pt was observed between the three selected chelating resins and a relatively good agreement was observed between the two laboratories using the same chelating resin, whereas lower results were observed with the anion-exchange resin. Larger discrepancies between the two laboratories were observed for Pd and no comparison could be made for Rh due to the low natural concentrations. The results show that in small urban rivers with high impact of urbanization, WWTPs are an important source of Pt, resulting from the use of anticancer drugs in hospitals and households. The limited retention of PGEs in WWTPs results in increased concentrations in urban rivers downstream. For Pd and Rh, similar trends were found with other traffic related elements such as Cu, Zn and Pb, showing the highest concentrations in waters collecting runoff from a highway. The data show that these elements, together with Gd, can be useful to trace specific pollution sources and their dispersion.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Submission date :
2024-02-28T22:41:03Z
2024-03-15T10:56:53Z
2024-03-15T10:56:53Z