Hot-electron photodynamics in silver-containing ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
PMID :
URL permanente :
Titre :
Hot-electron photodynamics in silver-containing BEA-type nanozeolite studied by femtosecond transient absorption spectroscopy.
Auteur(s) :
Kawtharani, Farah [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Laboratoire catalyse et spectrochimie [LCS]
Mintova, S. [Auteur]
Laboratoire catalyse et spectrochimie [LCS]
Retoux, R. [Auteur]
Laboratoire de cristallographie et sciences des matériaux [CRISMAT]
Mostafavi, M. [Auteur]
Institut de Chimie Physique [ICP]
Buntinx, Guy [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
De Waele, Vincent [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Laboratoire catalyse et spectrochimie [LCS]
Mintova, S. [Auteur]
Laboratoire catalyse et spectrochimie [LCS]
Retoux, R. [Auteur]
Laboratoire de cristallographie et sciences des matériaux [CRISMAT]
Mostafavi, M. [Auteur]
Institut de Chimie Physique [ICP]
Buntinx, Guy [Auteur]

Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
De Waele, Vincent [Auteur]

Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Titre de la revue :
ChemPhysChem
Nom court de la revue :
Chemphyschem
Date de publication :
2020-10-24
ISSN :
1439-7641
Mot(s)-clé(s) en anglais :
hot electron
plasmonic
pump-probe spectroscopy
silver nanoparticle
zeolite
plasmonic
pump-probe spectroscopy
silver nanoparticle
zeolite
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
Silver cations were introduced in nanosized BEA-type zeolite containing organic template by ion-exchange followed by chemical reduction towards preparation of photoactive materials (Ag0-BEA). The stabilization of highly ...
Lire la suite >Silver cations were introduced in nanosized BEA-type zeolite containing organic template by ion-exchange followed by chemical reduction towards preparation of photoactive materials (Ag0-BEA). The stabilization of highly dispersed Ag0 nanoparticles with a size of 1–2 nm in the BEA zeolite was revealed. The transient optical response of the Ag-BEA samples upon photoexcitation at 400 nm was studied by femtosecond absorption. The photodynamic of the hot electrons was found to depend on the sample preparation. The lifetime of the hot electrons in the Ag−BEA samples containing small Ag nanoparticles (1–2 nm) is significantly shortened in comparison to bear Ag nanoparticles with a size of 10 nm. While for the larger Ag nanoparticles, the energy absorbed in the conduction band is decaying by electron-phonon coupling into the metal lattice, the high surface-to-volume ratio of the small Ag nanoparticles favors the dissipation of the energy of the hot electrons from the metal nanoparticles (Ag0) towards the zeolitic micro-environment. This finding is encouraging for further applications of Ag-containing zeolites in photocatalysis and plasmonic chemistry.Lire moins >
Lire la suite >Silver cations were introduced in nanosized BEA-type zeolite containing organic template by ion-exchange followed by chemical reduction towards preparation of photoactive materials (Ag0-BEA). The stabilization of highly dispersed Ag0 nanoparticles with a size of 1–2 nm in the BEA zeolite was revealed. The transient optical response of the Ag-BEA samples upon photoexcitation at 400 nm was studied by femtosecond absorption. The photodynamic of the hot electrons was found to depend on the sample preparation. The lifetime of the hot electrons in the Ag−BEA samples containing small Ag nanoparticles (1–2 nm) is significantly shortened in comparison to bear Ag nanoparticles with a size of 10 nm. While for the larger Ag nanoparticles, the energy absorbed in the conduction band is decaying by electron-phonon coupling into the metal lattice, the high surface-to-volume ratio of the small Ag nanoparticles favors the dissipation of the energy of the hot electrons from the metal nanoparticles (Ag0) towards the zeolitic micro-environment. This finding is encouraging for further applications of Ag-containing zeolites in photocatalysis and plasmonic chemistry.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
CNRS
Collections :
Date de dépôt :
2024-02-28T22:52:13Z
2024-03-12T11:43:35Z
2024-03-12T11:43:35Z
Fichiers
- document
- Accès libre
- Accéder au document