Natural organic matter-cations complexation ...
Document type :
Article dans une revue scientifique: Article de synthèse/Review paper
PMID :
Permalink :
Title :
Natural organic matter-cations complexation and its impact on water treatment: A critical review.
Author(s) :
Adusei-Gyamfi, J. [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Ouddane, Baghdad [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Rietveld, L. [Auteur]
Cornard, Jean-Paul [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Criquet, Justine [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Ouddane, Baghdad [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Rietveld, L. [Auteur]
Cornard, Jean-Paul [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Criquet, Justine [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Journal title :
Water Research
Abbreviated title :
Water Res.
Volume number :
160
Pages :
130-147
Publication date :
2019-06-02
ISSN :
1879-2448
English keyword(s) :
Carboxylic
Phenolic
Water treatment
Ligands
Trace metals
NOM
Phenolic
Water treatment
Ligands
Trace metals
NOM
HAL domain(s) :
Sciences de l'environnement/Ingénierie de l'environnement
English abstract : [en]
The quality and quantity of natural organic matter (NOM) has been observed to evolve which poses challenges to water treatment facilities. Even though NOM may not be toxic itself, its presence in water has aesthetic effects, ...
Show more >The quality and quantity of natural organic matter (NOM) has been observed to evolve which poses challenges to water treatment facilities. Even though NOM may not be toxic itself, its presence in water has aesthetic effects, enhances biological growth in distribution networks, binds with pollutants and controls the bioavailability of trace metals. Even though NOM has heterogeneous functional groups, the predominant ones are the carboxyl and the phenolic groups, which have high affinities for metals depending on the pH. The properties of both the NOM and the trace elements influence the binding kinetics and preferences. Ca2+ prefers to bind with the carboxylic groups especially at a low pH while Zn2+ prefers the amine groups though practically, most cations bind to several functions groups. The nature of the chemical environment (neighboring ligands) the ligand finds itself equally influences its preference for a cation. The presence of NOM, cations or a complex of NOM-cations may have significant impact on the efficiency of water processes such as coagulation, adsorption, ion exchange resin and membrane filtration. In coagulation, the complexation between the coagulant salts and NOM helps to remove NOM from solution. This positive influence can further be enhanced by the addition of Ca2+. A negative influence is however, observed in lime-softening method as NOM complexes with Ca2+. A negative influence is also seen in membrane filtration where divalent cations partially neutralize the carboxyl functional groups of NOM thereby reducing the repulsion effect on NOM and increasing membrane fouling. The formation of disinfection by-products could either be increased or reduced during chlorination, the speciation of products formed is modified with generally the enhancement of haloacetic acid formation observed in presence of metal cations. This current work, presents in details the interactions of cations and NOM in the environment, the preference of cations for each functional group and the possible competition between cations for binding sites, as well as the possible impacts of the presence of cations, NOM, or their complex on water treatment processes.Show less >
Show more >The quality and quantity of natural organic matter (NOM) has been observed to evolve which poses challenges to water treatment facilities. Even though NOM may not be toxic itself, its presence in water has aesthetic effects, enhances biological growth in distribution networks, binds with pollutants and controls the bioavailability of trace metals. Even though NOM has heterogeneous functional groups, the predominant ones are the carboxyl and the phenolic groups, which have high affinities for metals depending on the pH. The properties of both the NOM and the trace elements influence the binding kinetics and preferences. Ca2+ prefers to bind with the carboxylic groups especially at a low pH while Zn2+ prefers the amine groups though practically, most cations bind to several functions groups. The nature of the chemical environment (neighboring ligands) the ligand finds itself equally influences its preference for a cation. The presence of NOM, cations or a complex of NOM-cations may have significant impact on the efficiency of water processes such as coagulation, adsorption, ion exchange resin and membrane filtration. In coagulation, the complexation between the coagulant salts and NOM helps to remove NOM from solution. This positive influence can further be enhanced by the addition of Ca2+. A negative influence is however, observed in lime-softening method as NOM complexes with Ca2+. A negative influence is also seen in membrane filtration where divalent cations partially neutralize the carboxyl functional groups of NOM thereby reducing the repulsion effect on NOM and increasing membrane fouling. The formation of disinfection by-products could either be increased or reduced during chlorination, the speciation of products formed is modified with generally the enhancement of haloacetic acid formation observed in presence of metal cations. This current work, presents in details the interactions of cations and NOM in the environment, the preference of cations for each functional group and the possible competition between cations for binding sites, as well as the possible impacts of the presence of cations, NOM, or their complex on water treatment processes.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Submission date :
2024-02-28T23:12:17Z
2024-03-11T09:09:15Z
2024-03-11T09:09:15Z
Files
- document
- Open access
- Access the document