A criterion for automatic image deconvolution ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
A criterion for automatic image deconvolution with L-0-norm regularization
Auteur(s) :
Ahmad, Mohamad [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Hugelier, Siewert [Auteur]
Vitale, Raffaele [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Eilers, Paul [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Ruckebusch, Cyril [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Hugelier, Siewert [Auteur]
Vitale, Raffaele [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Eilers, Paul [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Ruckebusch, Cyril [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Titre de la revue :
Journal of Chemometrics
Nom court de la revue :
J. Chemometr.
Numéro :
-
Date de publication :
2020-02-29
ISSN :
0886-9383
Mot(s)-clé(s) en anglais :
sparsity
regularization parameter
optimization
image
deconvolution
regularization parameter
optimization
image
deconvolution
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
Automatic penalty adjustment in sparse deconvolution with penalized least squares is required for improved reliability and broader applicability. In sparse deconvolution with an L0-norm penalty, the latent signal is by ...
Lire la suite >Automatic penalty adjustment in sparse deconvolution with penalized least squares is required for improved reliability and broader applicability. In sparse deconvolution with an L0-norm penalty, the latent signal is by nature discontinuous, and the magnitudes of the residuals and sparsity regularization terms are of different order of magnitude. This makes approaches such as generalized cross validation or L-curve unsuitable in practice. The criterion proposed in this paper is based on the representation of the sum of the normalized residuals and regularization terms (SNT) as a function of the penalty parameter. We observed that the minimum of the SNT corresponds to the optimal value of the penalty parameter. This approach was tested in the context of super-resolution fluorescence microscopy imaging. Both simulated and real live-cell images characterized by different complexities and emitter densities were analyzed to assess the performance of the developed optimization strategy and to demonstrate its usefulness over manual tuning.Lire moins >
Lire la suite >Automatic penalty adjustment in sparse deconvolution with penalized least squares is required for improved reliability and broader applicability. In sparse deconvolution with an L0-norm penalty, the latent signal is by nature discontinuous, and the magnitudes of the residuals and sparsity regularization terms are of different order of magnitude. This makes approaches such as generalized cross validation or L-curve unsuitable in practice. The criterion proposed in this paper is based on the representation of the sum of the normalized residuals and regularization terms (SNT) as a function of the penalty parameter. We observed that the minimum of the SNT corresponds to the optimal value of the penalty parameter. This approach was tested in the context of super-resolution fluorescence microscopy imaging. Both simulated and real live-cell images characterized by different complexities and emitter densities were analyzed to assess the performance of the developed optimization strategy and to demonstrate its usefulness over manual tuning.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
CNRS
Collections :
Date de dépôt :
2024-02-28T23:19:39Z
2024-03-12T14:31:21Z
2024-03-12T14:31:21Z