Exploring local spatial features in ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Exploring local spatial features in hyperspectral images
Auteur(s) :
Ahmad, Mohamad [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Vitale, Raffaele [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Silva, C. S. [Auteur]
Ruckebusch, Cyril [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Cocchi, M. [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Vitale, Raffaele [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Silva, C. S. [Auteur]
Ruckebusch, Cyril [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Cocchi, M. [Auteur]
Titre de la revue :
Journal of Chemometrics
Nom court de la revue :
J. Chemometr.
Numéro :
-
Date de publication :
2020-09-05
ISSN :
0886-9383
Mot(s)-clé(s) en anglais :
gray-level co-occurrence matrix
hyperspectral images
multivariate image analysis
spatial features
wavelet transform
hyperspectral images
multivariate image analysis
spatial features
wavelet transform
Discipline(s) HAL :
Chimie
Résumé en anglais : [en]
We propose a methodological framework to extract spatial features in hyperspectral imaging data and establish a link between these features and the spectral regions, capturing the observed structural patterns. The proposed ...
Lire la suite >We propose a methodological framework to extract spatial features in hyperspectral imaging data and establish a link between these features and the spectral regions, capturing the observed structural patterns. The proposed approach consists of five main steps: (i) two-dimensional stationary wavelet transform (2D-SWT) is applied to a hyperspectral data cube, decomposing each single-channel image with a selected wavelet filter up to the maximum decomposition level; (ii) a gray-level co-occurrence matrix is calculated for every 2D-SWT image resulting from stage (i); (iii) distinctive spatial features are determined by computing morphological descriptors from each gray-level co-occurrence matrix; (iv) the morphological descriptors are rearranged in a two-dimensional data array; and (v) this data matrix is subjected to principal component analysis (PCA) for exploring the variability of the aforementioned descriptors across spectral channels. As a result, groups of spectral wavelengths associated to specific spatial features can be pointed out yielding a better understanding and interpretation of the data. In principle, this information can also be further exploited, for example, to improve the separation of pure spectral profiles in a multivariate curve resolution context.Lire moins >
Lire la suite >We propose a methodological framework to extract spatial features in hyperspectral imaging data and establish a link between these features and the spectral regions, capturing the observed structural patterns. The proposed approach consists of five main steps: (i) two-dimensional stationary wavelet transform (2D-SWT) is applied to a hyperspectral data cube, decomposing each single-channel image with a selected wavelet filter up to the maximum decomposition level; (ii) a gray-level co-occurrence matrix is calculated for every 2D-SWT image resulting from stage (i); (iii) distinctive spatial features are determined by computing morphological descriptors from each gray-level co-occurrence matrix; (iv) the morphological descriptors are rearranged in a two-dimensional data array; and (v) this data matrix is subjected to principal component analysis (PCA) for exploring the variability of the aforementioned descriptors across spectral channels. As a result, groups of spectral wavelengths associated to specific spatial features can be pointed out yielding a better understanding and interpretation of the data. In principle, this information can also be further exploited, for example, to improve the separation of pure spectral profiles in a multivariate curve resolution context.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
CNRS
Collections :
Date de dépôt :
2024-02-28T23:22:41Z
2024-03-12T13:26:18Z
2024-03-12T13:26:18Z