Systematic literature review of in vivo ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Systematic literature review of in vivo rat femoral defect models using biomaterials to improve the induced membrane technique: a comprehensive analysis
Author(s) :
Saab, Marc [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Hôpital Roger Salengro [Lille]
Zobrist, Cedric [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Blanchemain, Nicolas [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Martel, Bernard [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Chai, Feng [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Hôpital Roger Salengro [Lille]
Zobrist, Cedric [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Blanchemain, Nicolas [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Martel, Bernard [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Chai, Feng [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Journal title :
EFORT Open Reviews
Volume number :
9
Pages :
138-145
Publisher :
British Editorial Society of Bone & Joint Surgery
Publication date :
2024-02-01
ISSN :
2058-5241
English keyword(s) :
induced membrane technique
PMMA
calcium phosphate spacer
artificial membrane
polymers
human tissue-derived membranes
femoral defect
bone defect
PMMA
calcium phosphate spacer
artificial membrane
polymers
human tissue-derived membranes
femoral defect
bone defect
HAL domain(s) :
Sciences du Vivant [q-bio]
Chimie/Polymères
Chimie/Matériaux
Chimie/Polymères
Chimie/Matériaux
English abstract : [en]
Purpose
The aim of this study was to conduct a systematic literature review analyzing the results of in vivo rat femoral defect models using biomaterials for improving the induced membrane technique (IMT).
...
Show more >Purpose The aim of this study was to conduct a systematic literature review analyzing the results of in vivo rat femoral defect models using biomaterials for improving the induced membrane technique (IMT). Methods Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the PubMed, Embase, and Web of Science databases were searched. Inclusion criteria were studies reporting results of the IMT in in vivo rat femoral critical-sized defect models using a biomaterial possibly combined with molecules. Methodologic quality was assessed with the Animal Research: Reporting In Vivo Experiments guidelines. Results Twenty studies met the inclusion criteria. Femoral stabilization with plate and screws was the most frequent. Histologic, biomechanical, and/or radiologic analyses were performed. In two-stage strategies, the PMMA spacer could be associated with bioactive molecules to enhance IM growth factor expression and improve bone formation. Modulating the roughness of spacers could increase IM thickness and accelerate its formation. In one-stage strategies, human tissue-derived membranes combined with bone grafting achieved bone formation comparable to a standard IMT. All calcium phosphate grafts seemed to require a functionalization with growth factors or bone marrow mononuclear cells to improve outcomes compared with non-functionalized grafts. Conclusion This systematic review described the main parameters of the in vivo rat femoral defect models using biomaterials to improve the induced membrane technique. Although the studies included had several methodological limitations that may limit the scope of these conclusions, one- and two-stage strategies reported promising results with biomaterials to improve the IMT.Show less >
Show more >Purpose The aim of this study was to conduct a systematic literature review analyzing the results of in vivo rat femoral defect models using biomaterials for improving the induced membrane technique (IMT). Methods Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the PubMed, Embase, and Web of Science databases were searched. Inclusion criteria were studies reporting results of the IMT in in vivo rat femoral critical-sized defect models using a biomaterial possibly combined with molecules. Methodologic quality was assessed with the Animal Research: Reporting In Vivo Experiments guidelines. Results Twenty studies met the inclusion criteria. Femoral stabilization with plate and screws was the most frequent. Histologic, biomechanical, and/or radiologic analyses were performed. In two-stage strategies, the PMMA spacer could be associated with bioactive molecules to enhance IM growth factor expression and improve bone formation. Modulating the roughness of spacers could increase IM thickness and accelerate its formation. In one-stage strategies, human tissue-derived membranes combined with bone grafting achieved bone formation comparable to a standard IMT. All calcium phosphate grafts seemed to require a functionalization with growth factors or bone marrow mononuclear cells to improve outcomes compared with non-functionalized grafts. Conclusion This systematic review described the main parameters of the in vivo rat femoral defect models using biomaterials to improve the induced membrane technique. Although the studies included had several methodological limitations that may limit the scope of these conclusions, one- and two-stage strategies reported promising results with biomaterials to improve the IMT.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2024-03-05T13:57:06Z
2024-03-06T11:57:27Z
2024-03-06T11:57:27Z
Files
- eor-EOR-23-0055.pdf
- Version éditeur
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 3.0 United States