The Martin boundary of relatively hyperbolic ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
The Martin boundary of relatively hyperbolic groups with virtually abelian parabolic subgroups
Author(s) :
Dussaule, Matthieu [Auteur]
Gekhtman, Ilya [Auteur]
Gerasimov, Victor [Auteur]
Potyagailo, Leonid [Auteur]
Département de mathématiques [Lille]
Gekhtman, Ilya [Auteur]
Gerasimov, Victor [Auteur]
Potyagailo, Leonid [Auteur]
Département de mathématiques [Lille]
Journal title :
L'Enseignement Mathématique
Pages :
341-382
Publisher :
Zürich International Mathematical Society Publishing House
Publication date :
2021-05-05
ISSN :
0013-8584
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
Given a probability measure on a finitely generated group, its Martinboundary is a way to compactify the group using the Green's functionof the corresponding random walk.We give a complete topological characterization ...
Show more >Given a probability measure on a finitely generated group, its Martinboundary is a way to compactify the group using the Green's functionof the corresponding random walk.We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space $\mathbb{H}^{n}$, we show that the Martin boundary coincides with the $CAT(0)$ boundary of the truncated space.Show less >
Show more >Given a probability measure on a finitely generated group, its Martinboundary is a way to compactify the group using the Green's functionof the corresponding random walk.We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space $\mathbb{H}^{n}$, we show that the Martin boundary coincides with the $CAT(0)$ boundary of the truncated space.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- 1711.11307
- Open access
- Access the document