Machine learning-assisted extreme events ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Machine learning-assisted extreme events forecasting in Kerr ring resonators
Author(s) :
Coulibaly, Saliya [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Bessin, Florent [Auteur]
Laboratoire de Photonique d'Angers [LPHIA]
Clerc, Marcel [Auteur]
Departamento de Física [Santiago de Chile] [DFI-FCFM]
Mussot, Arnaud [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Bessin, Florent [Auteur]
Laboratoire de Photonique d'Angers [LPHIA]
Clerc, Marcel [Auteur]
Departamento de Física [Santiago de Chile] [DFI-FCFM]
Mussot, Arnaud [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Conference title :
EOS Annual Meeting (EOSAM 2023)
City :
Dijon
Country :
France
Start date of the conference :
2023-09-11
Publication date :
2023-10-18
HAL domain(s) :
Science non linéaire [physics]/Dynamique Chaotique [nlin.CD]
English abstract : [en]
Predicting complex nonlinear dynamical systems has been even more urgent because of the emergence of extreme events such as earthquakes, volcanic eruptions, extreme weather events (lightning, hurricanes/cyclones, blizzards, ...
Show more >Predicting complex nonlinear dynamical systems has been even more urgent because of the emergence of extreme events such as earthquakes, volcanic eruptions, extreme weather events (lightning, hurricanes/cyclones, blizzards, tornadoes), and giant oceanic rogue waves, to mention a few. The recent milestones in the machine learning framework o↵er a new prospect in this area. For a high dimensional chaotic system, increasing the system’s size causes an augmentation of the complexity and, finally, the size of the artificial neural network. Here, we propose a new supervised machine learning strategy to locally forecast bursts occurring in the turbulent regime of a fiber ring cavity.Show less >
Show more >Predicting complex nonlinear dynamical systems has been even more urgent because of the emergence of extreme events such as earthquakes, volcanic eruptions, extreme weather events (lightning, hurricanes/cyclones, blizzards, tornadoes), and giant oceanic rogue waves, to mention a few. The recent milestones in the machine learning framework o↵er a new prospect in this area. For a high dimensional chaotic system, increasing the system’s size causes an augmentation of the complexity and, finally, the size of the artificial neural network. Here, we propose a new supervised machine learning strategy to locally forecast bursts occurring in the turbulent regime of a fiber ring cavity.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- epjconf_eosam2023_08015.pdf
- Open access
- Access the document