A compactness result for inhomogeneous ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
A compactness result for inhomogeneous nonlinear Schrödinger equations
Auteur(s) :
Dinh, Van [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ho Chi Minh City University of Science [HCMUS]
Keraani, Sahbi [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ho Chi Minh City University of Science [HCMUS]
Keraani, Sahbi [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Nonlinear Analysis: Theory, Methods and Applications
Pagination :
112617
Éditeur :
Elsevier
Date de publication :
2022
ISSN :
0362-546X
Mot(s)-clé(s) en anglais :
Inhomogeneous nonlinear Schrödinger equation
Compactness property
Linear profile decomposition
Nonlinear profile decomposition
Compactness property
Linear profile decomposition
Nonlinear profile decomposition
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Physique mathématique [math-ph]
Résumé en anglais : [en]
We establish a compactness property of the difference between nonlinear and linear operators (or the Duhamel operator) related to the inhomogeneous nonlinear Schr¨odinger equation. The proof is based on a refined profile ...
Lire la suite >We establish a compactness property of the difference between nonlinear and linear operators (or the Duhamel operator) related to the inhomogeneous nonlinear Schr¨odinger equation. The proof is based on a refined profile decomposition for the equation. More precisely, we prove that any sequence (φn)n of H1-functions which converges weakly in H1 to a function φ, the corresponding solutions with initial data φn can be decomposed (up to a remainder term) as a sum of the corresponding solution with initial data φ and solutions to the linear equationLire moins >
Lire la suite >We establish a compactness property of the difference between nonlinear and linear operators (or the Duhamel operator) related to the inhomogeneous nonlinear Schr¨odinger equation. The proof is based on a refined profile decomposition for the equation. More precisely, we prove that any sequence (φn)n of H1-functions which converges weakly in H1 to a function φ, the corresponding solutions with initial data φn can be decomposed (up to a remainder term) as a sum of the corresponding solution with initial data φ and solutions to the linear equationLire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Refined%20profile%20decomposition%20INLS.pdf
- Accès libre
- Accéder au document