Collinear-spin machine learned interatomic ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Collinear-spin machine learned interatomic potential for Fe7Cr2Ni alloy
Auteur(s) :
Shenoy, Lakshmi [Auteur]
University of Warwick [Coventry]
Woodgate, Christopher D. [Auteur]
University of Warwick [Coventry]
Staunton, Julie B. [Auteur]
University of Warwick [Coventry]
Bartók, Albert P. [Auteur]
University of Warwick [Coventry]
Becquart, Charlotte [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Etude et Modélisation des Mécanismes de Vieillissement des Matériaux [EM2VM]
Domain, Christophe [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Etude et Modélisation des Mécanismes de Vieillissement des Matériaux [EM2VM]
Kermode, James R. [Auteur]
University of Warwick [Coventry]
University of Warwick [Coventry]
Woodgate, Christopher D. [Auteur]
University of Warwick [Coventry]
Staunton, Julie B. [Auteur]
University of Warwick [Coventry]
Bartók, Albert P. [Auteur]
University of Warwick [Coventry]
Becquart, Charlotte [Auteur]

Unité Matériaux et Transformations (UMET) - UMR 8207
Etude et Modélisation des Mécanismes de Vieillissement des Matériaux [EM2VM]
Domain, Christophe [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Etude et Modélisation des Mécanismes de Vieillissement des Matériaux [EM2VM]
Kermode, James R. [Auteur]
University of Warwick [Coventry]
Titre de la revue :
Physical Review Materials
Nom court de la revue :
Phys. Rev. Materials
Numéro :
8
Éditeur :
American Physical Society (APS)
Date de publication :
2024-03-22
ISSN :
2475-9953
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
We have developed a machine learned interatomic potential for the prototypical austenitic steel Fe7Cr2Ni, using the Gaussian approximation potential (GAP) framework. This GAP can model the alloy's properties with close to ...
Lire la suite >We have developed a machine learned interatomic potential for the prototypical austenitic steel Fe7Cr2Ni, using the Gaussian approximation potential (GAP) framework. This GAP can model the alloy's properties with close to density functional theory (DFT) accuracy, while at the same time allowing us to access larger length and time scales than expensive first-principles methods. We also extended the GAP input descriptors to approximate the effects of collinear spins (spin GAP), and demonstrate how this extended model successfully predicts structural distortions due to antiferromagnetic and paramagnetic spin states. We demonstrate the application of the spin GAP model for bulk properties and vacancies and validate against DFT. These results are a step towards modeling the atomistic origins of ageing in austenitic steels with higher accuracy.Lire moins >
Lire la suite >We have developed a machine learned interatomic potential for the prototypical austenitic steel Fe7Cr2Ni, using the Gaussian approximation potential (GAP) framework. This GAP can model the alloy's properties with close to density functional theory (DFT) accuracy, while at the same time allowing us to access larger length and time scales than expensive first-principles methods. We also extended the GAP input descriptors to approximate the effects of collinear spins (spin GAP), and demonstrate how this extended model successfully predicts structural distortions due to antiferromagnetic and paramagnetic spin states. We demonstrate the application of the spin GAP model for bulk properties and vacancies and validate against DFT. These results are a step towards modeling the atomistic origins of ageing in austenitic steels with higher accuracy.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet Européen :
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Métallurgie Physique et Génie des Matériaux
Date de dépôt :
2024-03-25T07:07:33Z
2024-03-27T08:50:16Z
2024-03-27T08:50:16Z
Fichiers
- PhysRevMaterials.8.033804.pdf
- Version éditeur
- Accès libre
- Accéder au document