Dominance between self-incompatibility ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Dominance between self-incompatibility alleles determines the mating system of Capsella allopolyploids
Auteur(s) :
Duan, Tianlin [Auteur]
Department of Ecology and Genetics [Uppsala] [EBC]
Zhang, Zebin [Auteur]
Department of Ecology and Genetics [Uppsala] [EBC]
Genete, Mathieu [Auteur]
Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
Poux, Céline [Auteur]
Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
Sicard, Adrien [Auteur]
Swedish University of Agricultural Sciences = Sveriges lantbruksuniversitet [SLU]
Lascoux, Martin [Auteur]
Department of Ecology and Genetics [Uppsala] [EBC]
Castric, Vincent [Auteur]
Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
Vekemans, Xavier [Auteur]
Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
Department of Ecology and Genetics [Uppsala] [EBC]
Zhang, Zebin [Auteur]
Department of Ecology and Genetics [Uppsala] [EBC]
Genete, Mathieu [Auteur]
Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
Poux, Céline [Auteur]
Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
Sicard, Adrien [Auteur]
Swedish University of Agricultural Sciences = Sveriges lantbruksuniversitet [SLU]
Lascoux, Martin [Auteur]
Department of Ecology and Genetics [Uppsala] [EBC]
Castric, Vincent [Auteur]

Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
Vekemans, Xavier [Auteur]

Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
Titre de la revue :
Evolution Letters
Éditeur :
Wiley Open Access ; Oxford University Press
Date de publication :
2024-03-17
ISSN :
2056-3744
Mot(s)-clé(s) en anglais :
self-incompatibility polyploidy SRK SCR genetic dominance Capsella Lay summary
self-incompatibility
polyploidy
SRK
SCR
genetic dominance
Capsella
self-incompatibility
polyploidy
SRK
SCR
genetic dominance
Capsella
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
Abstract The shift from outcrossing to self-fertilization is one of the main evolutionary transitions in plants and has broad effects on evolutionary trajectories. In Brassicaceae, the ability to inhibit self-fertilization ...
Lire la suite >Abstract The shift from outcrossing to self-fertilization is one of the main evolutionary transitions in plants and has broad effects on evolutionary trajectories. In Brassicaceae, the ability to inhibit self-fertilization is controlled by 2 genes, SCR and SRK, tightly linked within the S-locus. A series of small non-coding RNAs also encoded within the S-locus regulates the transcriptional activity of SCR alleles, resulting in a linear dominance hierarchy between them. In Brassicaceae, natural allopolyploid species are often self-compatible (SC) even when one of the progenitor species is self-incompatible, but the reason why polyploid lineages tend to lose self-incompatibility (SI) and the timing of the loss of SI (immediately after ancestral hybridization between the progenitor species, or at a later stage after the formation of allopolyploid lineages) have generally remained elusive. We used a series of synthetic diploid and tetraploid hybrids obtained between self-fertilizing Capsella orientalis and outcrossing Capsella grandiflora to test whether the breakdown of SI could be observed immediately after hybridization, and whether the occurrence of SC phenotypes could be explained by the dominance interactions between S-haplotypes inherited from the parental lineages. We used RNA-sequencing data from young inflorescences to measure allele-specific expression of the SCR gene and infer dominance interactions in the synthetic hybrids. We then evaluated the seed set from autonomous self-pollination in the synthetic hybrids. Our results demonstrate that self-compatibility of the hybrids depends on the relative dominance between S-alleles inherited from the parental species, confirming that SI can be lost instantaneously upon formation of the ancestral allopolyploid lineage. They also confirm that the epigenetic regulation that controls dominance interactions between S-alleles can function between subgenomes in allopolyploids. Together, our results illustrate how a detailed knowledge of the mechanisms controlling SI can illuminate our understanding of the patterns of co-variation between the mating system and changes in ploidy.Lire moins >
Lire la suite >Abstract The shift from outcrossing to self-fertilization is one of the main evolutionary transitions in plants and has broad effects on evolutionary trajectories. In Brassicaceae, the ability to inhibit self-fertilization is controlled by 2 genes, SCR and SRK, tightly linked within the S-locus. A series of small non-coding RNAs also encoded within the S-locus regulates the transcriptional activity of SCR alleles, resulting in a linear dominance hierarchy between them. In Brassicaceae, natural allopolyploid species are often self-compatible (SC) even when one of the progenitor species is self-incompatible, but the reason why polyploid lineages tend to lose self-incompatibility (SI) and the timing of the loss of SI (immediately after ancestral hybridization between the progenitor species, or at a later stage after the formation of allopolyploid lineages) have generally remained elusive. We used a series of synthetic diploid and tetraploid hybrids obtained between self-fertilizing Capsella orientalis and outcrossing Capsella grandiflora to test whether the breakdown of SI could be observed immediately after hybridization, and whether the occurrence of SC phenotypes could be explained by the dominance interactions between S-haplotypes inherited from the parental lineages. We used RNA-sequencing data from young inflorescences to measure allele-specific expression of the SCR gene and infer dominance interactions in the synthetic hybrids. We then evaluated the seed set from autonomous self-pollination in the synthetic hybrids. Our results demonstrate that self-compatibility of the hybrids depends on the relative dominance between S-alleles inherited from the parental species, confirming that SI can be lost instantaneously upon formation of the ancestral allopolyploid lineage. They also confirm that the epigenetic regulation that controls dominance interactions between S-alleles can function between subgenomes in allopolyploids. Together, our results illustrate how a detailed knowledge of the mechanisms controlling SI can illuminate our understanding of the patterns of co-variation between the mating system and changes in ploidy.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- qrae011.pdf
- Accès libre
- Accéder au document