Ordering state in orthopyroxene as determined ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Ordering state in orthopyroxene as determined by precession electron diffraction
Auteur(s) :
Jacob, Damien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Palatinus, Lukáš [Auteur]
Institute of Physics of the Czech Academy of Sciences [FZU / CAS]
Cuvillier, Priscille [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Leroux, Hugues [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Domeneghetti, Chiara [Auteur]
Dipartimento di Scienze della Terra e dell'Ambiente [Pavia]
Cámara, Fernando [Auteur]
Dipartimento di Scienze della Terra "Ardito Desio"
Unité Matériaux et Transformations - UMR 8207 [UMET]
Palatinus, Lukáš [Auteur]
Institute of Physics of the Czech Academy of Sciences [FZU / CAS]
Cuvillier, Priscille [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Leroux, Hugues [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Domeneghetti, Chiara [Auteur]
Dipartimento di Scienze della Terra e dell'Ambiente [Pavia]
Cámara, Fernando [Auteur]
Dipartimento di Scienze della Terra "Ardito Desio"
Titre de la revue :
American Mineralogist
Numéro :
98
Pagination :
1526-1534
Date de publication :
2013
Discipline(s) HAL :
Planète et Univers [physics]/Astrophysique [astro-ph]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Résumé en anglais : [en]
Fe2+ and Mg distribution on octahedral M1 and M2 sites of the orthopyroxene structure is an indicator of the cooling rate and closure temperature of the mineral. It is generally obtained by single-crystal X-ray diffraction, ...
Lire la suite >Fe2+ and Mg distribution on octahedral M1 and M2 sites of the orthopyroxene structure is an indicator of the cooling rate and closure temperature of the mineral. It is generally obtained by single-crystal X-ray diffraction, which is limited in spatial resolution. In this work, we determine the cationic distribution at a submicrometer scale in a transmission electron microscope using precession electron diffraction. Two orthopyroxene samples coming from the same metamorphic rock are studied, a naturally ordered one and a disordered one. The latter was obtained from the ordered sample by annealing at high temperature and rapid quenching. Both samples have been first studied in X-ray diffraction and then in precession electron diffraction. Intensities recorded in zone-axis precession electron diffraction experiments have been quantitatively analyzed and compared to simulations, taking into account dynamical interactions between diffracted beams. Our structure refinement results are in good agreement with those obtained by single-crystal X-ray diffraction. They enable to distinguish between the ordered sample and the disordered one in terms of the observed molar fractions of Fe at M1 and M2 sites. We discuss the sensitivity of the method as a function of experimental parameters. The larger dispersion of the results obtained on the ordered specimen is attributed to structural heterogeneities inherent to the sample.Lire moins >
Lire la suite >Fe2+ and Mg distribution on octahedral M1 and M2 sites of the orthopyroxene structure is an indicator of the cooling rate and closure temperature of the mineral. It is generally obtained by single-crystal X-ray diffraction, which is limited in spatial resolution. In this work, we determine the cationic distribution at a submicrometer scale in a transmission electron microscope using precession electron diffraction. Two orthopyroxene samples coming from the same metamorphic rock are studied, a naturally ordered one and a disordered one. The latter was obtained from the ordered sample by annealing at high temperature and rapid quenching. Both samples have been first studied in X-ray diffraction and then in precession electron diffraction. Intensities recorded in zone-axis precession electron diffraction experiments have been quantitatively analyzed and compared to simulations, taking into account dynamical interactions between diffracted beams. Our structure refinement results are in good agreement with those obtained by single-crystal X-ray diffraction. They enable to distinguish between the ordered sample and the disordered one in terms of the observed molar fractions of Fe at M1 and M2 sites. We discuss the sensitivity of the method as a function of experimental parameters. The larger dispersion of the results obtained on the ordered specimen is attributed to structural heterogeneities inherent to the sample.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSCL
CNRS
INRA
ENSCL
CNRS
INRA
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2019-06-03T08:52:36Z
2021-02-19T16:34:01Z
2021-02-19T16:34:01Z