• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DP-SGD with weight clipping
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.48550/arXiv.2310.18001
Title :
DP-SGD with weight clipping
Author(s) :
Barczewski, Antoine [Auteur]
Machine Learning in Information Networks [MAGNET]
Ramon, Jan [Auteur]
Machine Learning in Information Networks [MAGNET]
Conference title :
CAp (Conférence sur l'Apprentissage automatique) 2024
Conference organizers(s) :
SSFAM (Société Savante Française d'Apprentissage Machine)
AFRIF (Association Française pour la Reconnaissance et l'Interprétation des Formes)
City :
Lille (France)
Country :
France
Start date of the conference :
2024-07-01
Publisher :
arXiv
Publication date :
2023
English keyword(s) :
Differential Privacy
Optimization
Machine Learning (cs.LG)
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
English abstract : [en]
Recently, due to the popularity of deep neural networks and other methods whose training typically relies on the optimization of an objective function, and due to concerns for data privacy, there is a lot of interest in ...
Show more >
Recently, due to the popularity of deep neural networks and other methods whose training typically relies on the optimization of an objective function, and due to concerns for data privacy, there is a lot of interest in differentially private gradient descent methods. To achieve differential privacy guarantees with a minimum amount of noise, it is important to be able to bound precisely the sensitivity of the information which the participants will observe. In this study, we present a novel approach that mitigates the bias arising from traditional gradient clipping. By leveraging a public upper bound of the Lipschitz value of the current model and its current location within the search domain, we can achieve refined noise level adjustments. We present a new algorithm with improved differential privacy guarantees and a systematic empirical evaluation, showing that our new approach outperforms existing approaches also in practice.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Recherche en Medicine respectant la vie Privée
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • main.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • main.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017