Covalent organic frameworks for design of ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Covalent organic frameworks for design of ruthenium catalysts with high single-atom site density for CO 2 hydrogenation into formic acid
Author(s) :
Fellenberg, Ana [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Chernyak, Sergei A. [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Yong, Zhou [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Corda, Massimo [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Oliveira De Souza, Danilo [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Safonova, Olga V. [Auteur]
Paul Scherrer Institute [PSI]
Martin-Diaconescu, Vlad [Auteur]
ALBA Synchrotron light source [Barcelone]
Ordomsky, Vitaly [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Ji, Gang [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Addad, Ahmed [Auteur]

Unité Matériaux et Transformations (UMET) - UMR 8207
Chernyak, Sergei A. [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Yong, Zhou [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Corda, Massimo [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Oliveira De Souza, Danilo [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Safonova, Olga V. [Auteur]
Paul Scherrer Institute [PSI]
Martin-Diaconescu, Vlad [Auteur]
ALBA Synchrotron light source [Barcelone]
Ordomsky, Vitaly [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Ji, Gang [Auteur]

Unité Matériaux et Transformations (UMET) - UMR 8207
Khodakov, Andrei [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Journal title :
Cell Rep. Phys. Sci.
Abbreviated title :
Cell Rep. Phys. Sci.
Volume number :
5
Pages :
-
Publication date :
2024-06-08
ISSN :
2666-3864
HAL domain(s) :
Chimie/Catalyse
Chimie/Matériaux
Chimie/Matériaux
English abstract : [en]
Carbon dioxide is an abundant carbon resource for chemical and fuel synthesis. Formic acid, vital for hydrogen storage, has numerous applications. Covalent organic frameworks are a unique class of materials composed of ...
Show more >Carbon dioxide is an abundant carbon resource for chemical and fuel synthesis. Formic acid, vital for hydrogen storage, has numerous applications. Covalent organic frameworks are a unique class of materials composed of interconnected organic building blocks through covalent bonds. They possess porosity and functional groups, making them suitable for creating supported metallic catalysts. In this study, we present a strategy that utilizes covalent organic frameworks with diverse structures and chemical compositions to enhance carbon dioxide hydrogenation to formic acid at low temperatures. This enhancement arises from both high density of single-atom ruthenium sites and their intrinsic activity. Operando X-ray absorption and catalytic tests demonstrate that the concentration of nitrogen functional groups affects the intrinsic single-site ruthenium activity, whereas the impact of oxygen-containing groups is minor. Catalyst stability is attributed to the ability of single atoms to resist reduction to metallic state. This strategy has broad applicability for various covalent organic framework-supported single-atom catalysts.Show less >
Show more >Carbon dioxide is an abundant carbon resource for chemical and fuel synthesis. Formic acid, vital for hydrogen storage, has numerous applications. Covalent organic frameworks are a unique class of materials composed of interconnected organic building blocks through covalent bonds. They possess porosity and functional groups, making them suitable for creating supported metallic catalysts. In this study, we present a strategy that utilizes covalent organic frameworks with diverse structures and chemical compositions to enhance carbon dioxide hydrogenation to formic acid at low temperatures. This enhancement arises from both high density of single-atom ruthenium sites and their intrinsic activity. Operando X-ray absorption and catalytic tests demonstrate that the concentration of nitrogen functional groups affects the intrinsic single-site ruthenium activity, whereas the impact of oxygen-containing groups is minor. Catalyst stability is attributed to the ability of single atoms to resist reduction to metallic state. This strategy has broad applicability for various covalent organic framework-supported single-atom catalysts.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Research team(s) :
Catalyse pour l’énergie et la synthèse de molécules plateforme (CEMOP)
Métallurgie Physique et Génie des Matériaux
Métallurgie Physique et Génie des Matériaux
Submission date :
2024-06-28T21:06:18Z
2024-07-10T07:45:20Z
2024-07-10T07:46:45Z
2024-07-10T07:45:20Z
2024-07-10T07:46:45Z
Files
- 1-s2.0-S2666386424001759-main.pdf
- Version éditeur
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States