Development of a next-generation bidirectional ...
Document type :
Communication dans un congrès avec actes
Title :
Development of a next-generation bidirectional neurobiohybrid interface with optimized energy efficiency enabling real-time adaptive neuromodulation
Author(s) :
Kobzar, Anna [Auteur]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Schoonjans, Nathan [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Mariot, Pascal [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratoire de Physiologie Cellulaire - U 1003 [PHYCELL]
Farfariello, Valerio [Auteur]
Laboratoire de Physiologie Cellulaire - U 1003 [PHYCELL]
Delcroix, David [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plateforme de Caractérisation Multi-Physiques - IEMN [PCMP - IEMN]
Kassi, Redha [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plateforme de Caractérisation Multi-Physiques - IEMN [PCMP - IEMN]
Cappy, Alain [Auteur]
Advanced NanOmeter DEvices - IEMN [ANODE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vlandas, Alexis [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hoel, Virginie [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Vanbesien, Christel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Schoonjans, Nathan [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Mariot, Pascal [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratoire de Physiologie Cellulaire - U 1003 [PHYCELL]
Farfariello, Valerio [Auteur]
Laboratoire de Physiologie Cellulaire - U 1003 [PHYCELL]
Delcroix, David [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plateforme de Caractérisation Multi-Physiques - IEMN [PCMP - IEMN]
Kassi, Redha [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plateforme de Caractérisation Multi-Physiques - IEMN [PCMP - IEMN]
Cappy, Alain [Auteur]

Advanced NanOmeter DEvices - IEMN [ANODE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vlandas, Alexis [Auteur]

Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hoel, Virginie [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Vanbesien, Christel [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Conference title :
Forum Fédération Européenne des Sociétés des Neurosciences, FENS 2024, J.6: Neuromorphic engineering
City :
Vienne
Country :
Autriche
Start date of the conference :
2024-06-25
HAL domain(s) :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
English abstract : [en]
Current neuromodulation strategies mainly rely on pharmaceutical interventions, with limited efficiency over time in chronic progressiveneurodegenerative disorders. Alternate therapeutical approaches include electric ...
Show more >Current neuromodulation strategies mainly rely on pharmaceutical interventions, with limited efficiency over time in chronic progressiveneurodegenerative disorders. Alternate therapeutical approaches include electric neuromodulation like deep brain stimulation for Parkinson’s disease.Nowadays, a variety of neural prostheses has been successfully developed to restore damaged/lost neural functions such as the ability to communicate in afully paralyzed patient, or to walk in cases of partial spinal lesions. However, despite proven therapeutic benefits, most available neural implants mainlyrely on an open-loop configuration and are energy-intensive, which limits their application potential. This highlights the need for closed-loop interfacesenabling real-time communications with living neuronal networks, thus permanently adjusting stimulation parameters to each patient’s need. The presentworks aims at developing such bidirectional neurobiohybrid interfaces. In this view, we chose a material approach based on an original artificial neuron withoptimized energy efficiency (Sourikopoulos et al. 2017) and conducted an interdisciplinary study involving the fabrication/characterization of neurobiohybriddevices enablingin vitro maintenance of various neurons directly onto planar gold electrodes. Calcium imaging and patch clamp techniques ensured thebiological reality of recorded spikes. Our results show the actual stimulation of electrically active cells plated within neurobiohybrids. In addition, we wereable to record electric activity within the devices. Taken together, our results set the bases for establishing a full bidirectional communication loop betweenartificial and biological neurons. In conclusion, the present work paves the way for developing next-generation closed-loop neuroprostheses.Show less >
Show more >Current neuromodulation strategies mainly rely on pharmaceutical interventions, with limited efficiency over time in chronic progressiveneurodegenerative disorders. Alternate therapeutical approaches include electric neuromodulation like deep brain stimulation for Parkinson’s disease.Nowadays, a variety of neural prostheses has been successfully developed to restore damaged/lost neural functions such as the ability to communicate in afully paralyzed patient, or to walk in cases of partial spinal lesions. However, despite proven therapeutic benefits, most available neural implants mainlyrely on an open-loop configuration and are energy-intensive, which limits their application potential. This highlights the need for closed-loop interfacesenabling real-time communications with living neuronal networks, thus permanently adjusting stimulation parameters to each patient’s need. The presentworks aims at developing such bidirectional neurobiohybrid interfaces. In this view, we chose a material approach based on an original artificial neuron withoptimized energy efficiency (Sourikopoulos et al. 2017) and conducted an interdisciplinary study involving the fabrication/characterization of neurobiohybriddevices enablingin vitro maintenance of various neurons directly onto planar gold electrodes. Calcium imaging and patch clamp techniques ensured thebiological reality of recorded spikes. Our results show the actual stimulation of electrically active cells plated within neurobiohybrids. In addition, we wereable to record electric activity within the devices. Taken together, our results set the bases for establishing a full bidirectional communication loop betweenartificial and biological neurons. In conclusion, the present work paves the way for developing next-generation closed-loop neuroprostheses.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :