Structural evolution of liquid silicates ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Structural evolution of liquid silicates under conditions in Super-Earth interiors
Author(s) :
Morard, Guillaume [Auteur]
Hernandez, Jean-Alexis [Auteur]
Pege, Clara [Auteur]
Nagy, Charlotte [Auteur]
Libon, Lélia [Auteur]
Lacquement, Antoine [Auteur]
Sokaras, Dimosthenis [Auteur]
Lee, Hae Ja [Auteur]
Galtier, Eric [Auteur]
Heimann, Philip [Auteur]
Cunningham, Eric [Auteur]
Glenzer, Siegfried H. [Auteur]
Vinci, Tommaso [Auteur]
Prescher, Clemens [Auteur]
Boccato, Silvia [Auteur]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Zhang, Yanyao [Auteur]
Yang, Hong [Auteur]
Wei, Xuehui [Auteur]
Pandolfi, Silvia [Auteur]
Mao, Wendy L. [Auteur]
Gleason, Arianna E. [Auteur]
Shim, Sang Heon [Auteur]
Alonso-Mori, Roberto [Auteur]
Ravasio, Alessandra [Auteur]
Hernandez, Jean-Alexis [Auteur]
Pege, Clara [Auteur]
Nagy, Charlotte [Auteur]
Libon, Lélia [Auteur]
Lacquement, Antoine [Auteur]
Sokaras, Dimosthenis [Auteur]
Lee, Hae Ja [Auteur]
Galtier, Eric [Auteur]
Heimann, Philip [Auteur]
Cunningham, Eric [Auteur]
Glenzer, Siegfried H. [Auteur]
Vinci, Tommaso [Auteur]
Prescher, Clemens [Auteur]
Boccato, Silvia [Auteur]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Zhang, Yanyao [Auteur]
Yang, Hong [Auteur]
Wei, Xuehui [Auteur]
Pandolfi, Silvia [Auteur]
Mao, Wendy L. [Auteur]
Gleason, Arianna E. [Auteur]
Shim, Sang Heon [Auteur]
Alonso-Mori, Roberto [Auteur]
Ravasio, Alessandra [Auteur]
Journal title :
Nature Communications
Abbreviated title :
Nat Commun
Volume number :
15
Pages :
8483
Publisher :
Springer Science and Business Media LLC
Publication date :
2024-10-03
ISSN :
2041-1723
HAL domain(s) :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
English abstract : [en]
Molten silicates at depth are crucial for planetary evolution, yet their local structure and physical properties under extreme conditions remain elusive due to experimental challenges. In this study, we utilize in situ ...
Show more >Molten silicates at depth are crucial for planetary evolution, yet their local structure and physical properties under extreme conditions remain elusive due to experimental challenges. In this study, we utilize in situ X-ray diffraction (XRD) at the Matter in Extreme Conditions (MEC) end-station of the Linear Coherent Linac Source (LCLS) at SLAC National Accelerator Laboratory to investigate liquid silicates. Using an ultrabright X-ray source and a high-power optical laser, we probed the local atomic arrangement of shock-compressed liquid (Mg,Fe)SiO3 with varying Fe content, at pressures from 81(9) to 385(40) GPa. We compared these findings to ab initio molecular dynamics simulations under similar conditions. Results indicate continuous densification of the O-O and Mg-Si networks beyond Earth’s interior pressure range, potentially altering melt properties at extreme conditions. This could have significant implications for early planetary evolution, leading to notable differences in differentiation processes between smaller rocky planets, such as Earth and Venus, and super-Earths, which are exoplanets with masses nearly three times that of Earth.Show less >
Show more >Molten silicates at depth are crucial for planetary evolution, yet their local structure and physical properties under extreme conditions remain elusive due to experimental challenges. In this study, we utilize in situ X-ray diffraction (XRD) at the Matter in Extreme Conditions (MEC) end-station of the Linear Coherent Linac Source (LCLS) at SLAC National Accelerator Laboratory to investigate liquid silicates. Using an ultrabright X-ray source and a high-power optical laser, we probed the local atomic arrangement of shock-compressed liquid (Mg,Fe)SiO3 with varying Fe content, at pressures from 81(9) to 385(40) GPa. We compared these findings to ab initio molecular dynamics simulations under similar conditions. Results indicate continuous densification of the O-O and Mg-Si networks beyond Earth’s interior pressure range, potentially altering melt properties at extreme conditions. This could have significant implications for early planetary evolution, leading to notable differences in differentiation processes between smaller rocky planets, such as Earth and Venus, and super-Earths, which are exoplanets with masses nearly three times that of Earth.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Matériaux Terrestres et Planétaires
Submission date :
2024-10-07T06:35:52Z
2024-10-09T08:03:27Z
2024-10-09T08:03:27Z
Files
- morard2024nc.pdf
- Version éditeur
- Open access
- Structural evolution of liquid silicates under conditions in Super-Earth interiors
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States