O-GlcNAcylation as a regulator of the ...
Document type :
Article dans une revue scientifique: Article de synthèse/Review paper
DOI :
PMID :
Permalink :
Title :
O-GlcNAcylation as a regulator of the functional and structural properties of the sarcomere in skeletal muscle: an update review.
Author(s) :
Lambert, Matthias [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Claeyssen, charlotte [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Bastide, Bruno [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369
Cieniewski, Caroline [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Claeyssen, charlotte [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Bastide, Bruno [Auteur]

Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369
Cieniewski, Caroline [Auteur]

Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Journal title :
Acta physiologica
Abbreviated title :
Acta Physiol (Oxf)
Pages :
e13301
Publication date :
2019-06-12
ISSN :
1748-1716
English keyword(s) :
O-GlcNAcylation
calcium activation properties
contractile apparatus
exercise
neuromuscular disorders
sarcomeric cytoskeleton
calcium activation properties
contractile apparatus
exercise
neuromuscular disorders
sarcomeric cytoskeleton
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Although the O-GlcNAcylation process was discovered in 1984, its potential role in the physiology and physiopathology of skeletal muscle only emerged 20 years later. An increasing number of publications strongly support a ...
Show more >Although the O-GlcNAcylation process was discovered in 1984, its potential role in the physiology and physiopathology of skeletal muscle only emerged 20 years later. An increasing number of publications strongly support a key role of O-GlcNAcylation in the modulation of important cellular processes which are essential for skeletal muscle functions. Indeed, over a thousand of O-GlcNAcylated proteins have been identified within skeletal muscle since 2004, which belong to various classes of proteins, including sarcomeric proteins. In this review, we focused on these myofibrillar proteins, including contractile and structural proteins. Because of the modification of motor and regulatory proteins, the regulatory myosin light chain (MLC2) is related to several reports that support a key role of O-GlcNAcylation in the fine modulation of calcium activation parameters of skeletal muscle fibres, depending on muscle phenotype and muscle work. In addition, another key function of O-GlcNAcylation has recently emerged in the regulation of organization and reorganization of the sarcomere. Altogether, this data support a key role of O-GlcNAcylation in the homeostasis of sarcomeric cytoskeleton, known to be disturbed in many related muscle disorders.Show less >
Show more >Although the O-GlcNAcylation process was discovered in 1984, its potential role in the physiology and physiopathology of skeletal muscle only emerged 20 years later. An increasing number of publications strongly support a key role of O-GlcNAcylation in the modulation of important cellular processes which are essential for skeletal muscle functions. Indeed, over a thousand of O-GlcNAcylated proteins have been identified within skeletal muscle since 2004, which belong to various classes of proteins, including sarcomeric proteins. In this review, we focused on these myofibrillar proteins, including contractile and structural proteins. Because of the modification of motor and regulatory proteins, the regulatory myosin light chain (MLC2) is related to several reports that support a key role of O-GlcNAcylation in the fine modulation of calcium activation parameters of skeletal muscle fibres, depending on muscle phenotype and muscle work. In addition, another key function of O-GlcNAcylation has recently emerged in the regulation of organization and reorganization of the sarcomere. Altogether, this data support a key role of O-GlcNAcylation in the homeostasis of sarcomeric cytoskeleton, known to be disturbed in many related muscle disorders.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Univ. Littoral Côte d’Opale
Univ. Artois
Université de Lille
Univ. Artois
Université de Lille
Research team(s) :
Activité Physique, Muscle, Santé (APMS)
Submission date :
2019-09-24T07:26:53Z
2020-04-10T08:42:54Z
2020-04-13T07:23:22Z
2020-04-10T08:42:54Z
2020-04-13T07:23:22Z
Files
- Acta Physiol 2019.pdf
- Version finale acceptée pour publication (postprint)
- Open access
- Access the document