• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhanced sensor environment graph based ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Permalink :
http://hdl.handle.net/20.500.12210/118855
Title :
Enhanced sensor environment graph based deep learning approach for air quality anomaly detection
Author(s) :
Masmoudi, Sahar [Auteur correspondant]
Centre for Digital Systems [CERI SN - IMT Nord Europe]
Centre for Energy and Environment [CERI EE - IMT Nord Europe]
Garnier, Christelle [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre for Digital Systems [CERI SN - IMT Nord Europe]
Savard, Anne [Auteur] refId
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre for Digital Systems [CERI SN - IMT Nord Europe]
Itier, Vincent [Auteur]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sauvage, Stephane [Auteur]
Centre for Energy and Environment [CERI EE - IMT Nord Europe]
Bulot, Florentin [Auteur]
Kaluzny, Pascal [Auteur]
Conference title :
32 ND European Signal Processing Conference (EUSIPCO) 2024
City :
Lyon (Centre des Congrès)
Country :
France
Start date of the conference :
2024-08-26
Publication date :
2024-11-30
English keyword(s) :
Pollutant forecasting Graph neural network A3T-GCN Anomaly detection
Pollutant forecasting
Graph neural network
A3T-GCN
Anomaly detection
HAL domain(s) :
Sciences de l'environnement/Ingénierie de l'environnement
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
<div><p>Air pollution is among the major threats to human well-being, highlighting the critical need for air quality monitoring, especially in urban areas. Whereas the development of lowcost pollution sensors has facilitated ...
Show more >
<div><p>Air pollution is among the major threats to human well-being, highlighting the critical need for air quality monitoring, especially in urban areas. Whereas the development of lowcost pollution sensors has facilitated a widespread monitoring, a reliable anomaly detection system is required to properly characterize data for the end-users. In this paper, we propose an enhanced deep learning approach based on the A3T-GCN (Attention Temporal Graph Convolutional Network) model that accurately forecasts particulate matter PM2.5 concentrations using real past measurements from a deployed sensor network. Our proposed Enhanced-A3T-GCN embeds all the available spatial and temporal correlations within the sensor network, along with additional information regarding the sensor environment in a graph. It is shown to achieve significant performance improvement with respect to other deep learning forecasting methods, emphasizing the importance of exploiting the sensor environment-based information. Further, the achieved accurate forecasting makes it possible to detect anomalies injected at both single and multiple sensor levels.</p></div>Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Submission date :
2024-11-22T03:05:44Z
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • Enhanced%20sensor%20environment%20graph%20based%20deep%20learning%20approach%20for%20air%20quality%20anomaly%20detection.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017