Enhanced sensor environment graph based ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Permalink :
Title :
Enhanced sensor environment graph based deep learning approach for air quality anomaly detection
Author(s) :
Masmoudi, Sahar [Auteur correspondant]
Centre for Digital Systems [CERI SN - IMT Nord Europe]
Centre for Energy and Environment [CERI EE - IMT Nord Europe]
Garnier, Christelle [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre for Digital Systems [CERI SN - IMT Nord Europe]
Savard, Anne [Auteur]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre for Digital Systems [CERI SN - IMT Nord Europe]
Itier, Vincent [Auteur]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sauvage, Stephane [Auteur]
Centre for Energy and Environment [CERI EE - IMT Nord Europe]
Bulot, Florentin [Auteur]
Kaluzny, Pascal [Auteur]
Centre for Digital Systems [CERI SN - IMT Nord Europe]
Centre for Energy and Environment [CERI EE - IMT Nord Europe]
Garnier, Christelle [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre for Digital Systems [CERI SN - IMT Nord Europe]
Savard, Anne [Auteur]

Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre for Digital Systems [CERI SN - IMT Nord Europe]
Itier, Vincent [Auteur]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sauvage, Stephane [Auteur]
Centre for Energy and Environment [CERI EE - IMT Nord Europe]
Bulot, Florentin [Auteur]
Kaluzny, Pascal [Auteur]
Conference title :
32 ND European Signal Processing Conference (EUSIPCO) 2024
City :
Lyon (Centre des Congrès)
Country :
France
Start date of the conference :
2024-08-26
Publication date :
2024-11-30
English keyword(s) :
Pollutant forecasting Graph neural network A3T-GCN Anomaly detection
Pollutant forecasting
Graph neural network
A3T-GCN
Anomaly detection
Pollutant forecasting
Graph neural network
A3T-GCN
Anomaly detection
HAL domain(s) :
Sciences de l'environnement/Ingénierie de l'environnement
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
<div><p>Air pollution is among the major threats to human well-being, highlighting the critical need for air quality monitoring, especially in urban areas. Whereas the development of lowcost pollution sensors has facilitated ...
Show more ><div><p>Air pollution is among the major threats to human well-being, highlighting the critical need for air quality monitoring, especially in urban areas. Whereas the development of lowcost pollution sensors has facilitated a widespread monitoring, a reliable anomaly detection system is required to properly characterize data for the end-users. In this paper, we propose an enhanced deep learning approach based on the A3T-GCN (Attention Temporal Graph Convolutional Network) model that accurately forecasts particulate matter PM2.5 concentrations using real past measurements from a deployed sensor network. Our proposed Enhanced-A3T-GCN embeds all the available spatial and temporal correlations within the sensor network, along with additional information regarding the sensor environment in a graph. It is shown to achieve significant performance improvement with respect to other deep learning forecasting methods, emphasizing the importance of exploiting the sensor environment-based information. Further, the achieved accurate forecasting makes it possible to detect anomalies injected at both single and multiple sensor levels.</p></div>Show less >
Show more ><div><p>Air pollution is among the major threats to human well-being, highlighting the critical need for air quality monitoring, especially in urban areas. Whereas the development of lowcost pollution sensors has facilitated a widespread monitoring, a reliable anomaly detection system is required to properly characterize data for the end-users. In this paper, we propose an enhanced deep learning approach based on the A3T-GCN (Attention Temporal Graph Convolutional Network) model that accurately forecasts particulate matter PM2.5 concentrations using real past measurements from a deployed sensor network. Our proposed Enhanced-A3T-GCN embeds all the available spatial and temporal correlations within the sensor network, along with additional information regarding the sensor environment in a graph. It is shown to achieve significant performance improvement with respect to other deep learning forecasting methods, emphasizing the importance of exploiting the sensor environment-based information. Further, the achieved accurate forecasting makes it possible to detect anomalies injected at both single and multiple sensor levels.</p></div>Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Submission date :
2024-11-22T03:05:44Z
Files
- document
- Open access
- Access the document
- Enhanced%20sensor%20environment%20graph%20based%20deep%20learning%20approach%20for%20air%20quality%20anomaly%20detection.pdf
- Open access
- Access the document