Parallelization of frequency domain quantum ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Parallelization of frequency domain quantum gates: manipulation and distribution of frequency-entangled photon pairs generated by a 21 GHz silicon microresonator
Author(s) :
Henry, Antoine [Auteur correspondant]
Département Communications & Electronique [COMELEC]
Télécommunications Optiques [GTO]
Groupe d'Études et de Recherche Interdisciplinaire en Information et COmmunication - ULR 4073 [GERIICO ]
Fioretto, Dario [Auteur]
Quandela SAS
Centre de Nanosciences et de Nanotechnologies [C2N]
Procopio, Lorenzo [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Monfray, Stéphane [Auteur]
STMicroelectronics [Crolles] [ST-CROLLES]
Boeuf, Frédéric [Auteur]
STMicroelectronics [Crolles] [ST-CROLLES]
Vivien, Laurent [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Cassan, Eric [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Alonzo-Ramos, Carlos [Auteur]
Bencheikh, Kamel [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Zaquine, Isabelle [Auteur]
Département Communications & Electronique [COMELEC]
Télécommunications Optiques [GTO]
Belabas, Nadia [Auteur correspondant]
Centre de Nanosciences et de Nanotechnologies [C2N]

Département Communications & Electronique [COMELEC]
Télécommunications Optiques [GTO]
Groupe d'Études et de Recherche Interdisciplinaire en Information et COmmunication - ULR 4073 [GERIICO ]
Fioretto, Dario [Auteur]
Quandela SAS
Centre de Nanosciences et de Nanotechnologies [C2N]
Procopio, Lorenzo [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Monfray, Stéphane [Auteur]
STMicroelectronics [Crolles] [ST-CROLLES]
Boeuf, Frédéric [Auteur]
STMicroelectronics [Crolles] [ST-CROLLES]
Vivien, Laurent [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Cassan, Eric [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Alonzo-Ramos, Carlos [Auteur]
Bencheikh, Kamel [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Zaquine, Isabelle [Auteur]
Département Communications & Electronique [COMELEC]
Télécommunications Optiques [GTO]
Belabas, Nadia [Auteur correspondant]
Centre de Nanosciences et de Nanotechnologies [C2N]
Journal title :
Advanced photonics
Pages :
036003
Publisher :
SPIE
Publication date :
2024-06-28
ISSN :
2577-5421
English keyword(s) :
Quantum gates
Frequency
Photon pairs
21 GHz silicon microresonator
Frequency
Photon pairs
21 GHz silicon microresonator
HAL domain(s) :
Physique [physics]
English abstract : [en]
Harnessing the frequency dimension in integrated photonics offers key advantages in terms of scalability, noise resilience, parallelization, and compatibility with telecom multiplexing techniques. Integrated ring resonators ...
Show more >Harnessing the frequency dimension in integrated photonics offers key advantages in terms of scalability, noise resilience, parallelization, and compatibility with telecom multiplexing techniques. Integrated ring resonators have been used to generate frequency-entangled states through spontaneous four-wave mixing. However, state-of-the-art integrated resonators are limited by trade-offs among size, spectral separation, and efficient photon pair generation. We have developed silicon ring resonators with a footprint below 0.05mm2 providing more than 70 frequency channels separated by 21 GHz. We exploit the narrow frequency separation to parallelize and independently control 34 single qubit-gates with a single set of three off-the-shelf electro-optic devices. We fully characterize 17 frequency-bin maximally entangled qubit pairs by performing quantum state tomography. We demonstrate for the first time, we believe, a fully connected five-user quantum network in the frequency domain. These results are a step towards a generation of quantum circuits implemented with scalable silicon photonics technology, for applications in quantum computing and secure communications.Show less >
Show more >Harnessing the frequency dimension in integrated photonics offers key advantages in terms of scalability, noise resilience, parallelization, and compatibility with telecom multiplexing techniques. Integrated ring resonators have been used to generate frequency-entangled states through spontaneous four-wave mixing. However, state-of-the-art integrated resonators are limited by trade-offs among size, spectral separation, and efficient photon pair generation. We have developed silicon ring resonators with a footprint below 0.05mm2 providing more than 70 frequency channels separated by 21 GHz. We exploit the narrow frequency separation to parallelize and independently control 34 single qubit-gates with a single set of three off-the-shelf electro-optic devices. We fully characterize 17 frequency-bin maximally entangled qubit pairs by performing quantum state tomography. We demonstrate for the first time, we believe, a fully connected five-user quantum network in the frequency domain. These results are a step towards a generation of quantum circuits implemented with scalable silicon photonics technology, for applications in quantum computing and secure communications.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
European Project :
Collections :
Source :
Files
- 2305.03457
- Open access
- Access the document