On Dirichlet eigenvalues of regular polygons
Type de document :
Compte-rendu et recension critique d'ouvrage
URL permanente :
Titre :
On Dirichlet eigenvalues of regular polygons
Auteur(s) :
Berghaus, David [Auteur]
Fraunhofer Institute for Intelligent Analysis and Information Systems [Fraunhofer IAIS]
Georgiev, Bogdan [Auteur]
Fraunhofer Institute for Intelligent Analysis and Information Systems [Fraunhofer IAIS]
Monien, Hartmut [Auteur]
Bethe Center for Theoretical Physics [BCTP]
Radchenko, Danylo [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Fraunhofer Institute for Intelligent Analysis and Information Systems [Fraunhofer IAIS]
Georgiev, Bogdan [Auteur]
Fraunhofer Institute for Intelligent Analysis and Information Systems [Fraunhofer IAIS]
Monien, Hartmut [Auteur]
Bethe Center for Theoretical Physics [BCTP]
Radchenko, Danylo [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Journal of Mathematical Analysis and Applications
Pagination :
128460
Éditeur :
Elsevier
Date de publication :
2024-04-25
ISSN :
0022-247X
Mot(s)-clé(s) en anglais :
Dirichlet eigenvalues
Regular polygons
Multiple zeta values
Asymptotics
Regular polygons
Multiple zeta values
Asymptotics
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
We prove that the first Dirichlet eigenvalue of a regular $N$-gon of area $\pi$ has an asymptotic expansion of the form $\lambda_1*(1+\sum_{n\ge3}C_n(\lambda_1)N^{-n})$ where $\lambda_1$ is the first Dirichlet eigenvalue ...
Lire la suite >We prove that the first Dirichlet eigenvalue of a regular $N$-gon of area $\pi$ has an asymptotic expansion of the form $\lambda_1*(1+\sum_{n\ge3}C_n(\lambda_1)N^{-n})$ where $\lambda_1$ is the first Dirichlet eigenvalue of the unit disk and $C_n$ are polynomials whose coefficients belong to the space of multiple zeta values of weight n and conjecture that their coefficients lie in the space of single-valued multiple zeta values. We also explicitly compute these polynomials for all $n \le 14$.Lire moins >
Lire la suite >We prove that the first Dirichlet eigenvalue of a regular $N$-gon of area $\pi$ has an asymptotic expansion of the form $\lambda_1*(1+\sum_{n\ge3}C_n(\lambda_1)N^{-n})$ where $\lambda_1$ is the first Dirichlet eigenvalue of the unit disk and $C_n$ are polynomials whose coefficients belong to the space of multiple zeta values of weight n and conjecture that their coefficients lie in the space of single-valued multiple zeta values. We also explicitly compute these polynomials for all $n \le 14$.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2024-11-22T04:34:18Z
Fichiers
- document
- Accès libre
- Accéder au document
- 1-s2.0-S0022247X24003822-main.pdf
- Accès libre
- Accéder au document