A multi-objective optimization to characterize ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
A multi-objective optimization to characterize the diffusion of nanocavities in tungsten
Auteur(s) :
De Backer, Andrée [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Souidi, Abdelkader [Auteur]
Université de Saïda Dr. Moulay Tahar
Hodille, Etienne A. [Auteur]
Commissariat à l'énergie atomique et aux énergies alternatives [CEA]
Autissier, Emmanuel [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Genevois, Cécile [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Haddad, Farah [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Della Noce, Antonin [Auteur]
Domain, Christophe [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Becquart, Charlotte [Auteur]
1002334|||Unité Matériaux et Transformations - UMR 8207 [UMET] (VALID)
529657|||Etude et Modélisation des Mécanismes de Vieillissement des Matériaux [EM2VM] (VALID)
Barthe, Marie France [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Souidi, Abdelkader [Auteur]
Université de Saïda Dr. Moulay Tahar
Hodille, Etienne A. [Auteur]
Commissariat à l'énergie atomique et aux énergies alternatives [CEA]
Autissier, Emmanuel [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Genevois, Cécile [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Haddad, Farah [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Della Noce, Antonin [Auteur]
Domain, Christophe [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Becquart, Charlotte [Auteur]
1002334|||Unité Matériaux et Transformations - UMR 8207 [UMET] (VALID)
529657|||Etude et Modélisation des Mécanismes de Vieillissement des Matériaux [EM2VM] (VALID)
Barthe, Marie France [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Titre de la revue :
Computational Materials Science
Nom court de la revue :
Computational Materials Science
Numéro :
248
Pagination :
113570
Éditeur :
Elsevier BV
Date de publication :
2025-02
ISSN :
0927-0256
Mot(s)-clé(s) en anglais :
Multi-objective optimization
Pareto front
OKMC
Irradiation damage
Defect microstructure
Nanocavity diffusion
Pareto front
OKMC
Irradiation damage
Defect microstructure
Nanocavity diffusion
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
We characterize the diffusion properties of nanocavities and their uncertainties by designing a multi-objective optimization approach. In this work, the nanocavity diffusion on the 0.3–4 nm size range is the input of a ...
Lire la suite >We characterize the diffusion properties of nanocavities and their uncertainties by designing a multi-objective optimization approach. In this work, the nanocavity diffusion on the 0.3–4 nm size range is the input of a multi-scale simulation that is adjusted to reproduce experimental results of a systematic study of nanocavity growth with temperature up to 1773 K. Under irradiation, in the material microstructure, the damage evolution results from a complicated interplay of the defects and their clusters (formed from the vacancies and self-interstitials created) which diffuse, recombine and grow. The simulation of the whole experiment, based on an Object Kinetic Monte Carlo algorithm, can take several hours per condition which is a strong limitation for the optimization scheme. We describe the method that succeeds for our problem. Starting from a rough and random sampling of the space of parameters, we then consider that each simulation is one point of the hypersurface in the high dimensional space formed by the optimized parameters and objectives. We iteratively improve the characterization of this hypersurface where the objectives are optimum thanks to a systematic search of patterns formed by points on the coordinate planes. The non-dominated solutions, i.e. the equally good solutions, also named the Pareto front, are finally characterized. They draw two “valleys” in the subspace of parameters, delimiting the uncertainties on the searched diffusion properties, which cannot be reduced with the experimental data and the model in their current form.Lire moins >
Lire la suite >We characterize the diffusion properties of nanocavities and their uncertainties by designing a multi-objective optimization approach. In this work, the nanocavity diffusion on the 0.3–4 nm size range is the input of a multi-scale simulation that is adjusted to reproduce experimental results of a systematic study of nanocavity growth with temperature up to 1773 K. Under irradiation, in the material microstructure, the damage evolution results from a complicated interplay of the defects and their clusters (formed from the vacancies and self-interstitials created) which diffuse, recombine and grow. The simulation of the whole experiment, based on an Object Kinetic Monte Carlo algorithm, can take several hours per condition which is a strong limitation for the optimization scheme. We describe the method that succeeds for our problem. Starting from a rough and random sampling of the space of parameters, we then consider that each simulation is one point of the hypersurface in the high dimensional space formed by the optimized parameters and objectives. We iteratively improve the characterization of this hypersurface where the objectives are optimum thanks to a systematic search of patterns formed by points on the coordinate planes. The non-dominated solutions, i.e. the equally good solutions, also named the Pareto front, are finally characterized. They draw two “valleys” in the subspace of parameters, delimiting the uncertainties on the searched diffusion properties, which cannot be reduced with the experimental data and the model in their current form.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Métallurgie Physique et Génie des Matériaux
Date de dépôt :
2024-12-13T06:31:06Z
2024-12-13T11:18:18Z
2024-12-13T11:18:18Z
Fichiers
- DeBacker_CMS_2025.pdf
- Version éditeur
- Accès libre
- Accéder au document