Acute effects of repeated cycling sprints ...
Type de document :
Article dans une revue scientifique
PMID :
URL permanente :
Titre :
Acute effects of repeated cycling sprints in hypoxia induced by voluntary hypoventilation
Auteur(s) :
Woorons, Xavier [Auteur]
Mucci, Patrick [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369
Aucouturier, Julien [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - EA 7369
Anthierens, Agathe [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Millet, Grégoire P. [Auteur]
Mucci, Patrick [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369
Aucouturier, Julien [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - EA 7369
Anthierens, Agathe [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Millet, Grégoire P. [Auteur]
Titre de la revue :
European journal of applied physiology
Nom court de la revue :
Eur. J. Appl. Physiol.
Numéro :
117
Pagination :
2433-2443
Date de publication :
2017-12-01
ISSN :
1439-6319
Mot(s)-clé(s) en anglais :
Repeated sprints
Hypoventilation
Hypoxia
Hypoxemia
Exercise
Hypoventilation
Hypoxia
Hypoxemia
Exercise
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
OBJECTIVE: This study aimed to investigate the acute responses to repeated-sprint exercise (RSE) in hypoxia induced by voluntary hypoventilation at low lung volume (VHL).
METHODS: Nine well-trained subjects performed two ...
Lire la suite >OBJECTIVE: This study aimed to investigate the acute responses to repeated-sprint exercise (RSE) in hypoxia induced by voluntary hypoventilation at low lung volume (VHL). METHODS: Nine well-trained subjects performed two sets of eight 6-s sprints on a cycle ergometer followed by 24 s of inactive recovery. RSE was randomly carried out either with normal breathing (RSN) or with VHL (RSH-VHL). Peak (PPO) and mean power output (MPO) of each sprint were measured. Arterial oxygen saturation, heart rate (HR), gas exchange and muscle concentrations of oxy-([O Hb]) and deoxyhaemoglobin/myoglobin ([HHb]) were continuously recorded throughout exercise. Blood lactate concentration ([La]) was measured at the end of the first (S1) and second set (S2). RESULTS: There was no difference in PPO and MPO between conditions in all sprints. Arterial oxygen saturation (87.7 ± 3.6 vs 96.9 ± 1.8% at the last sprint) and HR were lower in RSH-VHL than in RSN during most part of exercise. The changes in [O Hb] and [HHb] were greater in RSH-VHL at S2. Oxygen uptake was significantly higher in RSH-VHL than in RSN during the recovery periods following sprints at S2 (3.02 ± 0.4 vs 2.67 ± 0.5 L min on average) whereas [La] was lower in RSH-VHL at the end of exercise (10.3 ± 2.9 vs 13.8 ± 3.5 mmol.L ; p < 0.01). CONCLUSIONS: This study shows that performing RSE with VHL led to larger arterial and muscle deoxygenation than with normal breathing while maintaining similar power output. This kind of exercise may be worth using for performing repeated sprint training in hypoxia.Lire moins >
Lire la suite >OBJECTIVE: This study aimed to investigate the acute responses to repeated-sprint exercise (RSE) in hypoxia induced by voluntary hypoventilation at low lung volume (VHL). METHODS: Nine well-trained subjects performed two sets of eight 6-s sprints on a cycle ergometer followed by 24 s of inactive recovery. RSE was randomly carried out either with normal breathing (RSN) or with VHL (RSH-VHL). Peak (PPO) and mean power output (MPO) of each sprint were measured. Arterial oxygen saturation, heart rate (HR), gas exchange and muscle concentrations of oxy-([O Hb]) and deoxyhaemoglobin/myoglobin ([HHb]) were continuously recorded throughout exercise. Blood lactate concentration ([La]) was measured at the end of the first (S1) and second set (S2). RESULTS: There was no difference in PPO and MPO between conditions in all sprints. Arterial oxygen saturation (87.7 ± 3.6 vs 96.9 ± 1.8% at the last sprint) and HR were lower in RSH-VHL than in RSN during most part of exercise. The changes in [O Hb] and [HHb] were greater in RSH-VHL at S2. Oxygen uptake was significantly higher in RSH-VHL than in RSN during the recovery periods following sprints at S2 (3.02 ± 0.4 vs 2.67 ± 0.5 L min on average) whereas [La] was lower in RSH-VHL at the end of exercise (10.3 ± 2.9 vs 13.8 ± 3.5 mmol.L ; p < 0.01). CONCLUSIONS: This study shows that performing RSE with VHL led to larger arterial and muscle deoxygenation than with normal breathing while maintaining similar power output. This kind of exercise may be worth using for performing repeated sprint training in hypoxia.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Univ. Littoral Côte d’Opale
Univ. Artois
Université de Lille
Univ. Artois
Université de Lille
Équipe(s) de recherche :
Activité Physique, Muscle, Santé (APMS)
Date de dépôt :
2019-09-24T07:28:00Z