Infused textured polymer surface withstands ...
Type de document :
Communication dans un congrès avec actes
URL permanente :
Titre :
Infused textured polymer surface withstands harsh environment
Auteur(s) :
Vaillard, Anne-Sophie [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Saget, Manon [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Braud, Flavie [Auteur]
Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Institut universitaire de France [IUF]
Lippert, Marc [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Keirsbulck, Laurent [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Coffinier, Yannick [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Thomy, Vincent [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Saget, Manon [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Braud, Flavie [Auteur]

Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Jimenez, Maude [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Institut universitaire de France [IUF]
Lippert, Marc [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Keirsbulck, Laurent [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Coffinier, Yannick [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Thomy, Vincent [Auteur]

Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la manifestation scientifique :
The third international conference on nature inspired surface engineering (NISE 2024)
Organisateur(s) de la manifestation scientifique :
American Institute of Sciences (AIS)
Ville :
Granada (Spain)
Pays :
Espagne
Date de début de la manifestation scientifique :
2024-11-20
Mot(s)-clé(s) en anglais :
Slippery Fluorine-free Transparent Elastomer Wind-resistant
Slippery
Fluorine-free
Transparent
Elastomer
Wind-resistant
Slippery
Fluorine-free
Transparent
Elastomer
Wind-resistant
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
This study focuses on developing environmentally friendly, transparent, and anti-adhesive coatings named Slippery Liquid Infused Porous Surfaces (SLIPS), inspired by the carnivorous plant Nepenthes. These coatings feature ...
Lire la suite >This study focuses on developing environmentally friendly, transparent, and anti-adhesive coatings named Slippery Liquid Infused Porous Surfaces (SLIPS), inspired by the carnivorous plant Nepenthes. These coatings feature oil-infused micro/nano-textures that significantly reduce liquid adhesion regardless of surface tension [1]. While traditional surfaces use perfluorinated compounds, this research explores silicon-based oils as alternatives. Thin films (350-400 µm thickness) with micro-textures are crafted by double molding polydimethylsiloxane (PDMS), replicating the topography of laser-ablated stainless-steel molds. The surfaces, which features micro-pits a hundred micrometers deep, are then transferred onto glass substrates and then infused with silicone oil. This oil penetrates due to its chemical similarity to the PDMS matrix, making the surfaces slippery with increased transparency. Optimization of oil infusion aims to maximize retention, followed by shear stress testing for durability. Despite a reduction in oil level observed by digital microscopy after ~100 water immersion cycles, this decrease does not compromise sliding properties, maintaining hysteresis angles below 10° even at low surface tensions. Additionally, to address the primary limitation of lubricant loss under real-world conditions, morphological characterizations and dynamic wetting measurements have been conducted across a wide range of surface tensions before and after wind tunnel tests up to 78 m/s [2]. The observed decrease in oil level correlates with deteriorating sliding properties, informing the identification of pertinent parameters for surfaces better suited for high airflow conditions.Lire moins >
Lire la suite >This study focuses on developing environmentally friendly, transparent, and anti-adhesive coatings named Slippery Liquid Infused Porous Surfaces (SLIPS), inspired by the carnivorous plant Nepenthes. These coatings feature oil-infused micro/nano-textures that significantly reduce liquid adhesion regardless of surface tension [1]. While traditional surfaces use perfluorinated compounds, this research explores silicon-based oils as alternatives. Thin films (350-400 µm thickness) with micro-textures are crafted by double molding polydimethylsiloxane (PDMS), replicating the topography of laser-ablated stainless-steel molds. The surfaces, which features micro-pits a hundred micrometers deep, are then transferred onto glass substrates and then infused with silicone oil. This oil penetrates due to its chemical similarity to the PDMS matrix, making the surfaces slippery with increased transparency. Optimization of oil infusion aims to maximize retention, followed by shear stress testing for durability. Despite a reduction in oil level observed by digital microscopy after ~100 water immersion cycles, this decrease does not compromise sliding properties, maintaining hysteresis angles below 10° even at low surface tensions. Additionally, to address the primary limitation of lubricant loss under real-world conditions, morphological characterizations and dynamic wetting measurements have been conducted across a wide range of surface tensions before and after wind tunnel tests up to 78 m/s [2]. The observed decrease in oil level correlates with deteriorating sliding properties, informing the identification of pertinent parameters for surfaces better suited for high airflow conditions.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Date de dépôt :
2025-01-23T09:30:13Z
Fichiers
- Abstract_NISE-2024_Vincent_THOMY.pdf
- Accès libre
- Accéder au document