• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Monodromies at infinity of non-tame polynomials
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
Link :
https://lilloa.univ-lille.fr/handle/20.500.12210/120703
Title :
Monodromies at infinity of non-tame polynomials
Author(s) :
Takeuchi, Kiyoshi [Auteur]
Institute of Mathematics, University of Tsukuba
Tibar, Mihai [Auteur] refId
Université de Lille, Sciences et Technologies
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Bulletin de la SMF
Pages :
477-506
Publication date :
2016-08-18
HAL domain(s) :
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Variables complexes [math.CV]
English abstract : [en]
We consider the monodromy at infinity and the monodromies around the bifurcation points of polynomial functions $f : \mathbb C^n \longrightarrow \mathbb C$ which are not tame and might have non-isolated singularities. Our ...
Show more >
We consider the monodromy at infinity and the monodromies around the bifurcation points of polynomial functions $f : \mathbb C^n \longrightarrow \mathbb C$ which are not tame and might have non-isolated singularities. Our description of their Jordan blocks in terms of the Newton polyhedra and the motivic Milnor fibers relies on two new issues: the non-atypical eigenvalues of the monodromies and the corresponding concentration results for their generalized eigenspaces.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Comment :
22 pages.
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Submission date :
2025-01-24T10:15:56Z
Files
Thumbnail
  • 1208.4584
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017