Low Field Regime for the Relativistic ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Low Field Regime for the Relativistic Vlasov-Maxwell-Fokker-Planck System; the One and One Half Dimensional Case
Auteur(s) :
Bostan, Mihai [Auteur]
Scientific computation and visualization [CALVI]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Scientific computation and visualization [CALVI]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Goudon, Thierry [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Titre de la revue :
Kinetic and Related Models
Pagination :
139-170
Éditeur :
AIMS
Date de publication :
2008
ISSN :
1937-5093
Mot(s)-clé(s) en anglais :
Vlasov-Maxwell-Fokker-Planck system
Asymptotic behavior
Diffusion approximation
Asymptotic behavior
Diffusion approximation
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We study the asymptotic regime for the relativistic Vlasov-Maxwell-Fokker-Planck system which corresponds to a mean free path small compared to the Debye length, chosen as an observation length scale, combined to a large ...
Lire la suite >We study the asymptotic regime for the relativistic Vlasov-Maxwell-Fokker-Planck system which corresponds to a mean free path small compared to the Debye length, chosen as an observation length scale, combined to a large thermal velocity assumption. We are led to a convection-diffusion equation, where the convection velocity is obtained by solving a Poisson equation. The analysis is performed in the one and one half dimensional case and the proof combines dissipation mechanisms and finite speed of propagation properties.Lire moins >
Lire la suite >We study the asymptotic regime for the relativistic Vlasov-Maxwell-Fokker-Planck system which corresponds to a mean free path small compared to the Debye length, chosen as an observation length scale, combined to a large thermal velocity assumption. We are led to a convection-diffusion equation, where the convection velocity is obtained by solving a Poisson equation. The analysis is performed in the one and one half dimensional case and the proof combines dissipation mechanisms and finite speed of propagation properties.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- krm.2008.1.139
- Accès libre
- Accéder au document
- ParabVMFP1D2707.pdf
- Accès libre
- Accéder au document